深度學習(R語言版)
[英]斯沃納·古普塔(Swarna Gupta) [英]雷漢·阿裡·安薩裏(Rehan Ali Ansari) [英]迪帕揚·薩卡爾(Dipayan Sarkar)著,毛
- 出版商: 清華大學
- 出版日期: 2022-09-01
- 定價: $474
- 售價: 8.5 折 $403
- 語言: 簡體中文
- ISBN: 7302606986
- ISBN-13: 9787302606987
-
相關分類:
DeepLearning、R 語言
立即出貨 (庫存 < 3)
買這商品的人也買了...
-
$352R 語言編程藝術 (The Art of R Programming: A Tour of Statistical Software Design) -
$301深度學習:R語言實踐指南 (Introduction to Deep Learning Using R: A Step-by-Step Guide to Learning and Implementing Deep Learning Models Using R) -
$354神經網絡:R語言實現 -
Python GUI 設計活用 tkinter之路 — 王者歸來, 3/e$680$537 -
Java 最強入門邁向頂尖高手之路:王者歸來, 2/e (全彩版)$1,000$790 -
$607Java 程序性能優化實戰 -
Excel 函數庫最完整職場商業應用王者歸來$620$434 -
人工智慧大現場 - 實用篇-35天從入門到完成專案$690$538 -
$602機器學習實戰:使用 R、tidyverse 和 mlr -
Power BI 入門 大數據視覺化 + 智慧決策 + 雲端分享 王者歸來 (全彩印刷)$620$490 -
$297CKA/CKAD 應試指南 : 從 Docker 到 Kubernetes 完全攻略 -
OpenCV 影像創意邁向 AI 視覺王者歸來 (全彩印刷)$890$668 -
Qt Creator 快速入門, 4/e$588$559 -
$505自然語言處理的 Python 實踐 -
逆向分析實戰, 2/e$599$569 -
$454大數據分析師面試筆試寶典 -
HTML5 + Vue.js 3.x 從入門到精通 (視頻教學版)$534$507 -
$408物聯網鴻蒙系統App開發 -
$505深度探索 Flutter — 企業應用開發實戰 -
AR Foundation 增強現實開發實戰 (ARCore版)$654$621 -
$280邊緣計算 -
Object-Oriented Python|以 GUI 和遊戲程式學物件導向程式設計 (Object-Oriented Python)$520$411 -
去園區當 ARM 工程師 - 嵌入式 C語言全高度昇華$1,080$853 -
高速建立大型桌面應用 - 全新 Electron 框架現在就動手做$880$695 -
Code That Fits in Your Head|軟體工程的啟發式方法$580$435
中文年末書展|繁簡參展書2書75折 詳見活動內容 »
-
75折
為你寫的 Vue Components:從原子到系統,一步步用設計思維打造面面俱到的元件實戰力 (iThome 鐵人賽系列書)$780$585 -
75折
BDD in Action, 2/e (中文版)$960$720 -
75折
看不見的戰場:社群、AI 與企業資安危機$750$563 -
79折
AI 精準提問 × 高效應用:DeepSeek、ChatGPT、Claude、Gemini、Copilot 一本搞定$390$308 -
7折
超實用!Word.Excel.PowerPoint 辦公室 Office 365 省時高手必備 50招, 4/e (暢銷回饋版)$420$294 -
75折
裂縫碎光:資安數位生存戰$550$412 -
85折
日本當代最強插畫 2025 : 150位當代最強畫師豪華作品集$640$544 -
79折
Google BI 解決方案:Looker Studio × AI 數據驅動行銷實作,完美整合 Google Analytics 4、Google Ads、ChatGPT、Gemini$630$498 -
79折
超有料 Plus!職場第一實用的 AI 工作術 - 用對 AI 工具、自動化 Agent, 讓生產力全面進化!$599$473 -
75折
從零開始學 Visual C# 2022 程式設計, 4/e (暢銷回饋版)$690$518 -
75折
Windows 11 制霸攻略:圖解 AI 與 Copilot 應用,輕鬆搞懂新手必學的 Windows 技巧$640$480 -
75折
精準駕馭 Word!論文寫作絕非難事 (好評回饋版)$480$360 -
Sam Yang 的插畫藝術:用 Procreate / PS 畫出最強男友視角 x 女孩美好日常$699$629 -
79折
AI 加持!Google Sheets 超級工作流$599$473 -
78折
想要 SSR? 快使用 Nuxt 吧!:Nuxt 讓 Vue.js 更好處理 SEO 搜尋引擎最佳化(iThome鐵人賽系列書)$780$608 -
78折
超實用!業務.總管.人資的辦公室 WORD 365 省時高手必備 50招 (第二版)$500$390 -
7折
Node-RED + YOLO + ESP32-CAM:AIoT 智慧物聯網與邊緣 AI 專題實戰$680$476 -
79折
「生成式⇄AI」:52 個零程式互動體驗,打造新世代人工智慧素養$599$473 -
7折
Windows APT Warfare:惡意程式前線戰術指南, 3/e$720$504 -
75折
我輩程式人:回顧從 Ada 到 AI 這條程式路,程式人如何改變世界的歷史與未來展望 (We, Programmers: A Chronicle of Coders from Ada to AI)$850$637 -
75折
不用自己寫!用 GitHub Copilot 搞定 LLM 應用開發$600$450 -
79折
Tensorflow 接班王者:Google JAX 深度學習又快又強大 (好評回饋版)$780$616 -
79折
GPT4 會你也會 - 共融機器人的多模態互動式情感分析 (好評回饋版)$700$553 -
79折
技術士技能檢定 電腦軟體應用丙級術科解題教本|Office 2021$460$363 -
75折
Notion 與 Notion AI 全能實戰手冊:生活、學習與職場的智慧策略 (暢銷回饋版)$560$420
相關主題
商品描述
目錄大綱
目錄
第1章理解人工神經網絡和深度神經網絡
1.1配置環境
1.1.1準備工作
1.1.2操作步驟
1.1.3原理解析
1.1.4內容拓展
1.1.5參考閱讀
1.2神經網絡的Keras實現
1.3序貫模型API
1.3.1準備工作
1.3.2操作步驟
1.3.3原理解析
1.3.4內容拓展
1.3.5參考閱讀
1.4函數式API
1.4.1操作步驟
1.4.2原理解析
1.4.3內容拓展
1.5TensorFlow Estimator API
1.5.1準備工作
1.5.2操作步驟
1.5.3原理解析
1.5.4內容拓展
1.5.5參考閱讀
1.6TensorFlow Core API
1.6.1準備工作
1.6.2操作步驟
1.6.3原理解析
1.7實現單層神經網絡
1.7.1準備工作
1.7.2操作步驟
1.7.3原理解析
1.7.4內容拓展
1.7.5參考閱讀
1.8實現第一個深度神經網絡
1.8.1準備工作
1.8.2操作步驟
1.8.3原理解析
1.8.4內容拓展
1.8.5參考閱讀
第2章捲積神經網絡實戰
2.1捲積運算導論
2.1.1準備工作
2.1.2操作步驟
2.1.3原理解析
2.1.4內容拓展
2.1.5參考閱讀
2.2理解捲積步幅和填充
2.2.1操作步驟
2.2.2原理解析
2.3掌握池化層
2.3.1準備工作
2.3.2操作步驟
2.3.3原理解析
2.3.4內容拓展
2.3.5參考閱讀
2.4實現遷移學習
2.4.1準備工作
2.4.2操作步驟
2.4.3原理解析
2.4.4內容拓展
2.4.5參考閱讀
第3章循環神經網絡實戰
3.1使用RNN實現情感分類
3.1.1準備工作
3.1.2操作步驟
3.1.3原理解析
3.1.4內容拓展
3.1.5參考閱讀
3.2使用LSTM實現文本生成
3.2.1準備工作
3.2.2操作步驟
3.2.3原理解析
3.2.4內容拓展
3.2.5參考閱讀
3.3使用GRU實現時間序列預測
3.3.1準備工作
3.3.2操作步驟
3.3.3原理解析
3.3.4內容拓展
3.3.5參考閱讀
3.4實現雙向循環神經網絡
3.4.1操作步驟
3.4.2原理解析
3.4.3內容拓展
第4章使用Keras實現自動編碼器
4.1實現基本自動編碼器
4.1.1準備工作
4.1.2操作步驟
4.1.3原理解析
4.1.4內容拓展
4.2降維自動編碼器
4.2.1準備工作
4.2.2操作步驟
4.2.3原理解析
4.2.4內容拓展
4.3去噪自動編碼器
4.3.1準備工作
4.3.2操作步驟
4.3.3原理解析
4.3.4內容拓展
4.4自動編碼器的黑白圖像著色實戰
4.4.1準備工作
4.4.2操作步驟
4.4.3原理解析
4.4.4參考閱讀
第5章深度生成模型
5.1使用GAN生成圖像
5.1.1準備工作
5.1.2操作步驟
5.1.3原理解析
5.1.4內容拓展
5.1.5參考閱讀
5.2實現深度捲積生成對抗網絡
5.2.1準備工作
5.2.2操作步驟
5.2.3原理解析
5.2.4內容拓展
5.2.5參考閱讀
5.3實現變分自動編碼器
5.3.1準備工作
5.3.2操作步驟
5.3.3原理解析
5.3.4參考閱讀
第6章使用大規模深度學習處理大數據
6.1基於亞馬遜雲服務的深度學習
6.1.1準備工作
6.1.2操作步驟
6.1.3原理解析
6.2基於微軟Azure平臺的深度學習
6.2.1準備工作
6.2.2操作步驟
6.2.3原理解析
6.2.4內容拓展
6.2.5參考閱讀
6.3基於谷歌雲平臺的深度學習
6.3.1準備工作
6.3.2操作步驟
6.3.3原理解析
6.3.4內容拓展
6.4基於MXNet的深度學習
6.4.1準備工作
6.4.2操作步驟
6.4.3原理解析
6.4.4內容拓展
6.5使用MXNet實現深度學習網絡
6.5.1準備工作
6.5.2操作步驟
6.5.3原理解析
6.6使用MXNet實現預測建模
6.6.1準備工作
6.6.2操作步驟
6.6.3原理解析
第7章自然語言處理
7.1神經機器翻譯
7.1.1準備工作
7.1.2操作步驟
7.1.3原理解析
7.1.4內容拓展
7.1.5參考閱讀
7.2使用深度學習生成文本摘要
7.2.1準備工作
7.2.2操作步驟
7.2.3原理解析
7.2.4內容拓展
7.2.5參考閱讀
7.3語音識別
7.3.1準備工作
7.3.2操作步驟
7.3.3原理解析
7.3.4內容拓展
第8章深度學習之電腦視覺實戰
8.1目標定位
8.1.1準備工作
8.1.2操作步驟
8.1.3原理解析
8.1.4內容拓展
8.2人臉識別
8.2.1準備工作
8.2.2操作步驟
8.2.3原理解析
8.2.4內容拓展
8.2.5參考閱讀
第9章實現強化學習
9.1使用MDPtoolbox實現有模型強化學習
9.1.1準備工作
9.1.2操作步驟
9.1.3原理解析
9.1.4內容拓展
9.2無模型強化學習
9.2.1準備工作
9.2.2操作步驟
9.2.3原理解析
9.2.4參考閱讀
9.3使用強化學習求解懸崖尋路問題
9.3.1準備工作
9.3.2操作步驟
9.3.3原理解析
9.3.4內容拓展



