人工智能與ChatGPT
範煜
買這商品的人也買了...
-
$474Xilinx Artix-7 FPGA 快速入門、技巧及實例 -
IoT 沒那麼難!新手用 JavaScript 入門做自己的玩具!(iT邦幫忙鐵人賽系列書)$520$406 -
邊玩邊學,使用 Scratch 學習 AI 程式設計$480$379 -
用 micro:bit V2.0 學運算思維與程式設計 - 使用 MakeCode:Blocks - 最新版(第二版)$320$288 -
$356零起步玩轉 Mind + 創客教程 — 基於 micro:bit 開發板 -
精通資料視覺化 : 用試算表與程式說故事 (Hands-On Data Visualization: Interactive Storytelling from Spreadsheets to Code)$680$537 -
全中文自然語言處理:Pre-Trained Model 方法最新實戰$880$695 -
$486人人都能玩賺ChatGPT -
C++ 基礎必修課 (涵蓋「APCS大學程式設計先修檢測」試題詳解)$480$379 -
$306從柏拉圖到ChatGPT 智能內容生成的九個關鍵問題 -
$450與 AI 對話:ChatGPT 提示工程揭秘 -
$306駕馭 ChatGPT : 學會使用提示詞 -
$359深度學習在自然語言處理中的應用 : 從詞表徵到 ChatGPT -
$269這就是 ChatGPT -
$305知識圖譜:方法、工具與案例 -
$359AI智能辦公:從訓練ChatGPT開始 -
$441AI降臨:ChatGPT實戰與商業變現 -
用戶畫像:平臺構建與業務實踐$654$621 -
$305人人都是提示工程師 -
$491AI超級個體:ChatGPT與AIGC實戰指南 -
Notion 最強效應用:卡片盒筆記法 × GTD 時間管理 × 電子手帳 × 數位履歷 × Notion AI$499$394 -
ChatGPT 開發手冊 Turbo × Vision 進化版 — 用 OpenAI Chat/Assistants API‧Function calling 設計 GPTs action‧LINE/Discord bot‧股市分析/自動助理$820$648 -
ReactJS 實踐入門$768$730 -
$331Python數據科學實戰 -
$356碼上行動:用 ChatGPT 學會 Python 編程巧用 ChatGPT 快速搞定 Python
中文年末書展|繁簡參展書2書75折 詳見活動內容 »
-
75折
為你寫的 Vue Components:從原子到系統,一步步用設計思維打造面面俱到的元件實戰力 (iThome 鐵人賽系列書)$780$585 -
75折
BDD in Action, 2/e (中文版)$960$720 -
75折
看不見的戰場:社群、AI 與企業資安危機$750$563 -
79折
AI 精準提問 × 高效應用:DeepSeek、ChatGPT、Claude、Gemini、Copilot 一本搞定$390$308 -
7折
超實用!Word.Excel.PowerPoint 辦公室 Office 365 省時高手必備 50招, 4/e (暢銷回饋版)$420$294 -
75折
裂縫碎光:資安數位生存戰$550$412 -
85折
日本當代最強插畫 2025 : 150位當代最強畫師豪華作品集$640$544 -
79折
Google BI 解決方案:Looker Studio × AI 數據驅動行銷實作,完美整合 Google Analytics 4、Google Ads、ChatGPT、Gemini$630$498 -
79折
超有料 Plus!職場第一實用的 AI 工作術 - 用對 AI 工具、自動化 Agent, 讓生產力全面進化!$599$473 -
75折
從零開始學 Visual C# 2022 程式設計, 4/e (暢銷回饋版)$690$518 -
75折
Windows 11 制霸攻略:圖解 AI 與 Copilot 應用,輕鬆搞懂新手必學的 Windows 技巧$640$480 -
75折
精準駕馭 Word!論文寫作絕非難事 (好評回饋版)$480$360 -
Sam Yang 的插畫藝術:用 Procreate / PS 畫出最強男友視角 x 女孩美好日常$699$629 -
79折
AI 加持!Google Sheets 超級工作流$599$473 -
78折
想要 SSR? 快使用 Nuxt 吧!:Nuxt 讓 Vue.js 更好處理 SEO 搜尋引擎最佳化(iThome鐵人賽系列書)$780$608 -
78折
超實用!業務.總管.人資的辦公室 WORD 365 省時高手必備 50招 (第二版)$500$390 -
7折
Node-RED + YOLO + ESP32-CAM:AIoT 智慧物聯網與邊緣 AI 專題實戰$680$476 -
79折
「生成式⇄AI」:52 個零程式互動體驗,打造新世代人工智慧素養$599$473 -
7折
Windows APT Warfare:惡意程式前線戰術指南, 3/e$720$504 -
75折
我輩程式人:回顧從 Ada 到 AI 這條程式路,程式人如何改變世界的歷史與未來展望 (We, Programmers: A Chronicle of Coders from Ada to AI)$850$637 -
75折
不用自己寫!用 GitHub Copilot 搞定 LLM 應用開發$600$450 -
79折
Tensorflow 接班王者:Google JAX 深度學習又快又強大 (好評回饋版)$780$616 -
79折
GPT4 會你也會 - 共融機器人的多模態互動式情感分析 (好評回饋版)$700$553 -
79折
技術士技能檢定 電腦軟體應用丙級術科解題教本|Office 2021$460$363 -
75折
Notion 與 Notion AI 全能實戰手冊:生活、學習與職場的智慧策略 (暢銷回饋版)$560$420
相關主題
商品描述
人們相信人工智能可以為這個時代的技術帶來突破,而ChatGPT則使這種希望成為現實。現在,許多人都渴望瞭解與ChatGPT相關的一切,包括技術的歷史和背景,其神奇的功能以及如何使用它。雖然ChatGPT的使用方法很簡單,但它具有無限的潛力。如果不去親身體驗,很難體會到它的強大之處。本書盡可能全面地介紹了與ChatGPT相關的內容,特別是許多應用示例,可以給讀者帶來啟發。 希望讀者通過這本書瞭解ChatGPT後,在自己的工作中也能充分利用它。本書適合希望瞭解和使用ChatGPT的人閱讀。
目錄大綱
目錄
第1章 人工智能概述 ·························································1
1.1 什麼是人工智能 ························1
1.2 人工智能的發展歷史 ··················2
1.3 人工智能的分類 ························4
1.4 機器學習 ································5
1.5 深度學習 ································6
1.6 通用人工智能(AGI) ·················9
1.7 自然語言處理 ··························10
1.8 生成式人工智能(AIGC) ············11
1.9 強化學習 ·······························12
第2章 自然語言處理 ·······················································15
2.1 自然語言處理的基本概念 ············15
2.2 自然語言處理的主要技術 ············15
2.3 自然語言處理的發展歷史 ············16
2.4 語言模型 ·······························19
2.5 文本分類和聚類 ·······················24
2.6 分詞和詞性標註 ·······················26
2.7 命名實體識別 ··························28
2.8 句法分析 ·······························29
2.9 情感分析 ·······························30
2.10 機器翻譯 ······························32
2.11 文本摘要 ······························33
2.12 自然語言處理的商業應用 ···········34
2.13 自然語言處理的發展趨勢 ···········39
第3章 OpenAI公司及其產品 ············································40
3.1 OpenAI公司簡介 ·····················40
3.2 OpenAI公司發展歷史 ················40
3.3 OpenAI和微軟的合作 ················41
3.4 OpenAI公司主要產品 ················42
第4章 ChatGPT關聯技術 ················································46
4.1 前饋神經網絡 ··························46
4.2 序列到序列模型(Seq2Seq) ·········47
4.3 自註意力機制 ··························47
4.4 多頭自註意力機制 ····················48
4.5 自監督學習 ····························48
4.6 Transformer 模型······················49
4.7 語言生成技術 ··························51
4.8 多語種語言模型 ·······················52
4.9 預訓練語言模型 ·······················53
4.10 生成式預訓練模型(GPT) ·········54
4.11 近端策略優化算法(PPO) ·········54
4.12 詞嵌入 ································55
4.13 Softmax分類器 ······················56
4.14 指示學習和提示學習 ················57
IV
4.15 人類反饋強化學習(RLHF) ·······584.16 多模態 ································594.17 生成式對抗網絡······················604.18 知識圖譜和實體鏈接 ················614.19 GPU、TPU與模型訓練 ·············61
第5章 ChatGPT介紹 ······················································665.1 ChatGPT的主要功能 ·················665.2 ChatGPT的開發歷史 ·················675.3 ChatGPT的開發目標 ·················675.4 GPT模型的演化 ······················685.5 GPT-3到ChatGPT的演化 ···········715.6 模型的突破davinci-002 ··············735.7 ChatGPT的模型調用 ·················745.8 ChatGPT的訓練過程 ·················745.9 預訓練素材來源 ·······················765.10 訓練數據集 ···························775.11 數據集標註 ···························785.12 RLHF應用 ···························795.13 計算資源與參數構成 ················815.14 ChatGPT存在的問題 ················82
第6章 GPT–3.5引擎介紹 ·················································846.1 GPT-3引擎 ····························846.2 GPT-3.5引擎 ··························856.3 ChatGPT和GPT-3的區別 ···········856.4 預訓練 ··································856.5 詞嵌入應用 ····························866.6 多層Transformer模塊 ···············876.7 模型變體 ·······························88
第7章 ChatGPT使用指南 ················································907.1 如何訪問ChatGPT····················907.2 如何更有效地提問 ····················917.3 提問技巧 ·······························957.4 會話線程 ·······························967.5 上下文 ··································977.6 重生成答案 ····························987.7 應對回答字數限制 ····················997.8 使用小技巧 ···························103
第8章 ChatGPT應用形式 ··············································1048.1 計算 ····································1048.2 寫代碼 ·································1068.3 解釋代碼 ······························1078.4 高級語言轉換成匯編語言 ···········1088.5 反匯編 ·································1108.6 程序文檔生成 ·························1118.7 程序語言轉換 ·························1128.8 程序模擬運行 ·························1138.9 代碼增加註釋 ·························1138.10 時間復雜度計算·····················1148.11 代碼優化方案 ·······················1158.12 修復代碼Bug ·······················1168.13 查詢公式 ·····························1178.14 生成復雜公式 ·······················1198.15 生成圖片(通過代碼運行) ········1208.16 生成表格 ·····························122
人工智能與ChatGPT 4校 文前.indd 42023/6/24 18:13:37
目 錄
V
8.17 生成數據庫文檔·····················123
8.18 自動生成SQL代碼 ·················123
8.19 不同數據庫SQL命令轉換 ········124
8.20 提取關鍵字 ··························126
8.21 取名 ··································126
8.22 轉換人稱 ·····························127
8.23 整理文字 ·····························127
8.24 生成流程圖 ··························128
8.25 英語論文摘要 ·······················130
第9章 OpenAI API ························································132
9.1 API概論 ·······························132
9.2 交互方式 ······························132
9.3 關鍵概念 ······························133
9.4 Playground工具 ······················135
9.5 API例子 ·······························136
9.6 API訪問 ·······························137
9.7 API使用 ·······························138
9.8 API參數 ·······························139
9.9 API功能模塊 ·························142
9.10 API端點(Endpoints) ·············143
9.11 文本生成 ·····························144
9.12 語言翻譯 ·····························145
9.13 情感分析 ·····························145
9.14 文本摘要 ·····························147
9.15 文本相似度 ··························149
9.16 文本分類 ·····························149
9.17 命名實體識別 ·······················152
9.18 聊天機器人 ··························153
9.19 設置API響應字符數 ···············155
9.20 API應用案例 ························156
第10章 構建自己的ChatGPT模型 ···································160
10.1 為什麼需要 ··························160
10.2 如何訓練 ·····························160
10.3 如何使用 ·····························161
10.4 訓練代碼示例 ·······················161
10.5 模型使用代碼示例 ··················163
10.6 訓練數據集格式·····················164
10.7 企業專有模型構建 ··················164
第11章 ChatGPT用於數據分析 ·······································167
11.1 數據分析簡介 ·······················167
11.2 數據準備 ·····························167
11.3 數據的可視化 ·······················170
11.4 聚類分析 ·····························180
11.5 相關性分析 ··························184
11.6 預測 ··································186
第12章 ChatGPT在不同領域的應用 ································190
12.1 工業領域 ·····························190
12.2 醫療領域 ·····························192
12.3 金融領域 ·····························193
12.4 教育領域 ·····························194
12.5 知識產權領域 ·······················195
VI
第13章綜合應用示例 ····················································19813.1 籌備會議 ·····························19813.2 擬訂方案 ·····························20413.3 申請專利 ·····························20913.4 軟件開發 ·····························21813.5 解決生產技術問題 ··················238
第14章教育行業應用示例 ··············································24614.1 擬定教學大綱 ·······················24614.2 撰寫教案 ·····························25414.3 製作教學PPT ·······················26414.4 出試捲 ·······························26714.5 編寫畢業設計材料 ··················27314.6 撰寫畢業論文 ·······················28614.7 準備新建專業材料 ··················295
參考文獻········································································299
人工智能與ChatGPT 4校 文前.indd 6
2023/6/24 18:13:38



