Python貝葉斯建模與計算 Bayesian Modeling and Computation in Python
[阿根廷] 奧斯瓦爾多·A. 馬丁(Osvaldo A. Martin),[美]拉萬·庫馬爾(Ravin Kumar)[美]勞俊鵬(Junpeng Lao)著 郭濤 譯
- 出版商: 清華大學
- 出版日期: 2024-03-01
- 定價: $588
- 售價: 7.9 折 $464 (限時優惠至 2025-12-25)
- 語言: 簡體中文
- 頁數: 324
- ISBN: 7302654859
- ISBN-13: 9787302654858
-
相關分類:
Python
- 此書翻譯自: Bayesian Modeling and Computation in Python
立即出貨
買這商品的人也買了...
-
$505Python 物理學高效計算 (Effective Computation in Physics) -
$422深入淺出圖神經網絡:GNN 原理解析 -
最新 AI 技術:知識圖譜集技術概念大成$980$774 -
$505QGIS 軟件及其應用教程 -
$403統計策略搜索強化學習方法及應用 -
$662程序員數學 : 用 Python 學透線性代數和微積分 (Math for Programmers: 3D graphics, machine learning, and simulations with Python) -
Python 統計分析:生命科學應用 (An Introduction to Statistics with Python: With Applications in the Life Sciences)$500$390 -
凡人也能懂的白話人工智慧演算法 (Grokking Artificial Intelligence Algorithms)$580$435 -
Python 資料結構×演算法 刷題鍛鍊班:234 題帶你突破 Coding 面試的難關$650$514 -
真槍實彈做專案:PyQt 極速開發視窗軟體, 2/e$880$695 -
$556PyTorch 高級機器學習實戰 -
$301信號與系統 — 使用 MATLAB 分析與實現, 2/e -
$611Python 貝葉斯分析, 2/e -
擴散模型從原理到實戰$479$455 -
$611深入淺出 SSD:固態存儲核心技術、原理與實戰, 2/e -
Hugging Face 模型及資料大公開 - 利用 BERT 建立全中文 NLP 應用$720$569 -
$556演算法秘籍 -
硬件設計指南從裝置認知到手機基帶設計$594$564 -
CMake 構建實戰:項目開發捲$599$569 -
$426深度學習的數學——使用Python語言 -
$454量子計算十講 -
$1,019貝葉斯數據分析, 2/e (Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan, 2/e) -
30天挑戰精通 PowerShell【第四版】:Windows、Linux 和 macOS 適用 (Learn PowerShell in a Month of Lunches: Covers Windows, Linux, and macOS, 4/e)$760$532 -
C++ 高性能編程$888$844 -
AI 繪圖邁向視覺設計$720$569
中文年末書展|繁簡參展書2書75折 詳見活動內容 »
-
75折
為你寫的 Vue Components:從原子到系統,一步步用設計思維打造面面俱到的元件實戰力 (iThome 鐵人賽系列書)$780$585 -
75折
BDD in Action, 2/e (中文版)$960$720 -
75折
看不見的戰場:社群、AI 與企業資安危機$750$563 -
79折
AI 精準提問 × 高效應用:DeepSeek、ChatGPT、Claude、Gemini、Copilot 一本搞定$390$308 -
7折
超實用!Word.Excel.PowerPoint 辦公室 Office 365 省時高手必備 50招, 4/e (暢銷回饋版)$420$294 -
75折
裂縫碎光:資安數位生存戰$550$412 -
日本當代最強插畫 2025 : 150位當代最強畫師豪華作品集$640$576 -
79折
Google BI 解決方案:Looker Studio × AI 數據驅動行銷實作,完美整合 Google Analytics 4、Google Ads、ChatGPT、Gemini$630$498 -
79折
超有料 Plus!職場第一實用的 AI 工作術 - 用對 AI 工具、自動化 Agent, 讓生產力全面進化!$599$473 -
75折
從零開始學 Visual C# 2022 程式設計, 4/e (暢銷回饋版)$690$518 -
75折
Windows 11 制霸攻略:圖解 AI 與 Copilot 應用,輕鬆搞懂新手必學的 Windows 技巧$640$480 -
75折
精準駕馭 Word!論文寫作絕非難事 (好評回饋版)$480$360 -
Sam Yang 的插畫藝術:用 Procreate / PS 畫出最強男友視角 x 女孩美好日常$699$629 -
79折
AI 加持!Google Sheets 超級工作流$599$473 -
78折
想要 SSR? 快使用 Nuxt 吧!:Nuxt 讓 Vue.js 更好處理 SEO 搜尋引擎最佳化(iThome鐵人賽系列書)$780$608 -
78折
超實用!業務.總管.人資的辦公室 WORD 365 省時高手必備 50招 (第二版)$500$390 -
7折
Node-RED + YOLO + ESP32-CAM:AIoT 智慧物聯網與邊緣 AI 專題實戰$680$476 -
79折
「生成式⇄AI」:52 個零程式互動體驗,打造新世代人工智慧素養$599$473 -
7折
Windows APT Warfare:惡意程式前線戰術指南, 3/e$720$504 -
75折
我輩程式人:回顧從 Ada 到 AI 這條程式路,程式人如何改變世界的歷史與未來展望 (We, Programmers: A Chronicle of Coders from Ada to AI)$850$637 -
75折
不用自己寫!用 GitHub Copilot 搞定 LLM 應用開發$600$450 -
79折
Tensorflow 接班王者:Google JAX 深度學習又快又強大 (好評回饋版)$780$616 -
79折
GPT4 會你也會 - 共融機器人的多模態互動式情感分析 (好評回饋版)$700$553 -
79折
技術士技能檢定 電腦軟體應用丙級術科解題教本|Office 2021$460$363 -
75折
Notion 與 Notion AI 全能實戰手冊:生活、學習與職場的智慧策略 (暢銷回饋版)$560$420
相關主題
商品描述
《Python貝葉斯建模與計算》旨在幫助貝葉斯初學者成為中級從業者。本書使用了PyMC3、TensorFlow Probability和Arviz等多個軟件庫的實踐方法,重點是應用統計學的實踐方法,並參考了基礎數學理論。 本書首先回顧了貝葉斯推斷的概念。第2章介紹了貝葉斯模型探索性分析的現代方法。基於這兩個基本原理,接下來的章節介紹了各種模型,包括線性回歸、樣條、時間序列和貝葉斯加性回歸樹。其後幾章討論的主題包括:逼近貝葉斯計算,通過端到端案例研究展示如何在不同環境中應用貝葉斯建模,以及概率編程語言內部構件。最後一章深入講述數學理論或擴展對某些主題的討論,作為本書其餘部分的參考。 《Python貝葉斯建模與計算》由PyMC3、ArviZ、Bambi和TensorFlowProbability等軟件庫的貢獻者撰寫。
作者簡介
奧斯瓦爾多·A.馬丁,是阿根廷IMASL-CONICET和芬蘭阿爾托大學計算機科學系的研究員。他擁有生物物理學和結構生物信息學博士學位。多年來,他日益精進對貝葉斯方面的數據分析問題的研究。他對開發和實現貝葉斯統計和概率建模軟件工具尤其感興趣。
目錄大綱
目 錄
第1章 貝葉斯推斷 1
1.1 貝葉斯建模 1
1.1.1 貝葉斯模型 2
1.1.2 貝葉斯推斷介紹 2
1.2 一個自製採樣器,不要隨意嘗試 5
1.3 支持自動推斷,反對自動建模 9
1.4 量化先驗信息的方法 12
1.4.1 共軛先驗 13
1.4.2 客觀先驗 15
1.4.3 最大熵先驗 17
1.4.4 弱信息先驗與正則化先驗 20
1.4.5 先驗預測分佈用於評估先驗選擇 21
1.5 練習 21
第2章 貝葉斯模型的探索性分析 25
2.1 貝葉斯推斷前後的工作 25
2.2 理解你的假設 26
2.3 理解你的預測 28
2.4 診斷數值推斷 32
2.4.1 有效樣本量 33
2.4.2 潛在尺度縮減因子( ) 35
2.4.3 蒙特卡羅標準差 35
2.4.4 軌跡圖 37
2.4.5 自相關圖 38
2.4.6 秩圖 38
2.4.7 散度 40
2.4.8 採樣器的參數和其他診斷方法 42
2.5 模型比較 43
2.5.1 交叉驗證和留一法 44
2.5.2 對數預測密度的期望 47
2.5.3 帕累托形狀參數 47
2.5.4 解讀帕累托參數 較大時的p_loo 48
2.5.5 LOO-PIT 49
2.5.6 模型平均 50
2.6 練習 51
第3章 線性模型與概率編程語言 55
3.1 比較兩個或多個組 55
3.2 線性回歸 63
3.2.1 一個簡單的線性模型 65
3.2.2 預測 67
3.2.3 中心化處理 68
3.3 多元線性回歸 70
3.4 廣義線性模型 74
3.4.1 邏輯回歸 75
3.4.2 分類模型 76
3.4.3 解釋對數賠率 81
3.5 回歸模型的先驗選擇 82
3.6 練習 85
第4章 擴展線性模型 87
4.1 轉換預測變量 87
4.2 可變的不確定性 90
4.3 引入交互效應 91
4.4 魯棒的回歸 93
4.5 池化、多級模型和混合效應 97
4.5.1 非池化參數 98
4.5.2 池化參數 100
4.5.3 組混合與公共參數 102
4.6 分層模型 104
4.6.1 後驗幾何形態很重要 107
4.6.2 分層模型的優勢 112
4.6.3 分層模型的先驗選擇 114
4.7 練習 114
第5章 樣條 117
5.1 多項式回歸 117
5.2 擴展特徵空間 118
5.3 樣條的基本原理 120
5.4 使用Patsy軟件庫構建設計矩陣 123
5.5 用PyMC3擬合樣條 125
5.6 選擇樣條的結點和先驗 127
5.7 用樣條對二氧化碳吸收量建模 129
5.8 練習 134
第6章 時間序列 137
6.1 時間序列問題概覽 137
6.2 將時間序列分析視為回歸問題 138
6.2.1 時間序列的設計矩陣 143
6.2.2 基函數和廣義加性模型 144
6.3 自回歸模型 147
6.3.1 隱AR過程和平滑 152
6.3.2 (S)AR(I)MA(X) 154
6.4 狀態空間模型 157
6.4.1 線性高斯狀態空間模型與卡爾曼濾波 158
6.4.2 ARIMA模型的狀態空間表示 161
6.4.3 貝葉斯結構化的時間序列 164
6.5 其他時間序列模型 168
6.6 模型的評判和先驗選擇 168
6.7 練習 170
第7章 貝葉斯加性回歸樹 173
7.1 決策樹 173
7.2 BART模型 176
7.3 BART模型先驗 177
7.3.1 先驗的獨立性 177
7.3.2 樹結構 的先驗 177
7.3.3 葉結點值μij和樹數量m的先驗 178
7.4 擬合貝葉斯加性回歸樹 178
7.5 自行車數據的BART模型 178
7.6 廣義BART模型 180
7.7 BART的可解釋性 181
7.7.1 部分依賴圖 182
7.7.2 個體條件期望圖 183
7.8 預測變量的選擇 185
7.9 PyMC3中BART的先驗選擇 187
7.10 練習 188
第8章 逼近貝葉斯計算 191
8.1 超越似然 191
8.2 逼近的後驗 192
8.3 用ABC逼近擬合一個高斯 194
8.4 選擇距離函數、ϵ和統計量 195
8.4.1 選擇距離函數 196
8.4.2 選擇ϵ 197
8.4.3 選擇統計量 199
8.5 g-and-k分佈 199
8.6 逼近移動平均 203
8.7 在ABC場景中做模型比較 205
8.7.1 邊際似然與LOO 205
8.7.2 模型選擇與隨機森林 209
8.7.3 MA模型的模型選擇 209
8.8 為ABC選擇先驗 211
8.9 練習 211
第9章 端到端貝葉斯工作流 213
9.1 工作流、上下文和問題 213
9.2 獲取數據 216
9.2.1 抽樣調查 216
9.2.2 試驗設計 216
9.2.3 觀察性研究 216
9.2.4 缺失數據 217
9.2.5 應用示例:收集航班延誤數據 217
9.3 構建不止一個模型 218
9.3.1 在構建貝葉斯模型前需要問的問題 218
9.3.2 應用示例:選擇航班延誤的似然 218
9.4 選擇先驗和預測先驗 220
9.5 推斷和推斷診斷 222
9.6 後驗圖 223
9.7 評估後驗預測分佈 224
9.8 模型比較 225
9.9 獎勵函數和決策 228
9.10 與特定受眾分享結果 230
9.10.1 分析流程的可重復性 231
9.10.2 理解受眾 232
9.10.3 靜態視覺輔助 233
9.10.4 可重復的計算環境 234
9.10.5 應用示例:展示航班延誤模型和結論 234
9.11 試驗性示例:比較兩個組 235
9.12 練習 239
第10章 概率編程語言 241
10.1 PPL的系統工程視角 241
10.2 後驗計算 242
10.2.1 計算梯度 243
10.2.2 示例:近實時推斷 244
10.3 應用編程接口 245
10.3.1 示例:Stan和Slicstan 246
10.3.2 示例:PyMC3和PyMC4 247
10.4 PPL驅動的轉換 248
10.4.1 對數概率 248
10.4.2 隨機變量和分佈轉換 250
10.4.3 示例:有界和無界隨機變量之間的採樣比較 251
10.5 操作圖和自動重參數化 252
10.6 異常處理 255
10.7 基礎語言、代碼生態系統、模塊化 257
10.8 設計PPL 258
10.9 應用貝葉斯從業者的註意事項 265
10.10 練習 265
第11章 附加主題 267
11.1 概率背景 267
11.1.1 概率 268
11.1.2 條件概率 269
11.1.3 概率分佈 270
11.1.4 離散隨機變量及其分佈 271
11.1.5 連續隨機變量和分佈 275
11.1.6 聯合、條件和邊際分佈 279
11.1.7 概率積分轉換 282
11.1.8 期望 284
11.1.9 轉換 285
11.1.10 極限 286
11.1.11 馬爾可夫鏈 288
11.2 熵 290
11.3 Kullback-Leibler散度 292
11.4 信息標準 294
11.5 深入介紹LOO 296
11.6 Jeffrey先驗求導 297
11.6.1 關於θ的二項似然的Jeffrey先驗 298
11.6.2 關於 的二項似然的Jeffrey先驗 299
11.6.3 二項似然的Jeffrey後驗 299
11.7 邊際似然 300
11.7.1 調和平均估計器 300
11.7.2 邊際似然和模型比較 301
11.7.3 貝葉斯因子與WAIC和LOO 303
11.8 移出平面 304
11.9 推斷方法 307
11.9.1 網格方法 307
11.9.2 Metropolis-Hastings 308
11.9.3 哈密頓蒙特卡羅 310
11.9.4 序貫蒙特卡羅 314
11.9.5 變分推斷 315
11.10 編程參考 317
11.10.1 選擇哪種編程語言 317
11.10.2 版本控制 317
11.10.3 依賴項管理和包倉庫 317
11.10.4 環境管理 318
11.10.5 文本編輯器、集成開發環境、筆記 318
11.10.6 本書使用的專用工具 319
詞匯表 321
參考文獻(在線提供) 325



