多目標貝葉斯優化——面向大模型的超參調優理論
徐華,王洪燕,袁源
- 出版商: 清華大學
- 出版日期: 2024-07-01
- 定價: $354
- 售價: 7.9 折 $280
- 語言: 簡體中文
- 頁數: 182
- ISBN: 7302667519
- ISBN-13: 9787302667513
-
相關分類:
Machine Learning
立即出貨
買這商品的人也買了...
-
Node.js 模組參考手冊$580$458 -
$414C# 敏捷開發實踐 -
$594ASP.NET Web API 設計 (Designing Evolvable Web APIs with ASP.NET) -
Ubuntu17 完全自學手冊:桌面、系統與網路應用全攻略$580$452 -
初探機器學習|使用 Python (Thoughtful Machine Learning with Python)$480$379 -
$322全棧開發之道:MongoDB+Express+AngularJS+Node.js -
Python 資料科學學習手冊 (Python Data Science Handbook: Essential Tools for Working with Data)$780$616 -
$294Node.js 開發實戰 -
RESTful Web Clients 技術手冊 (RESTful Web Clients: Enabling Reuse Through Hypermedia)$580$458 -
現代 JavaScript 實務應用 (Practical Modern JavaScript: Dive into ES6 and the future of JavaScript)$480$379 -
Ubuntu 系統管理與架站實務, 3/e$650$553 -
AI 機器人、藍芽與 Android 整合開發技術$450$405 -
$474Koa 與 Node.js 開發實戰 -
$352Vue.js 項目實戰 -
$305Web 前端開發 使用 ASP.NET Core、Angular 和 Bootstrap (Front-end Development with ASP.NET Core, AngularJS, and Bootstrap) -
橫跨三大平台的開發框架 -- .Net Core 通吃 Win/Mac/Linux$520$442 -
$1,188C# 高級編程, 11/e (Professional C# 7 and .NET Core 2.0) -
Deep learning 深度學習必讀 - Keras 大神帶你用 Python 實作 (Deep Learning with Python)$1,000$790 -
Python 最強入門邁向頂尖高手之路 -- 王者歸來 (全彩版)$1,000$790 -
橫跨 Android 及 Apple 的神話:用 Dart 語言神啟 Flutter 大業$690$545 -
跟 NVIDIA 學深度學習!從基本神經網路到 ......、GPT、BERT...,紮穩機器視覺與大型語言模型 (LLM) 的建模基礎$880$748 -
LaTeX 入門實戰$414$393 -
$407Python 貝葉斯深度學習
中文年末書展|繁簡參展書2書75折 詳見活動內容 »
-
75折
為你寫的 Vue Components:從原子到系統,一步步用設計思維打造面面俱到的元件實戰力 (iThome 鐵人賽系列書)$780$585 -
75折
BDD in Action, 2/e (中文版)$960$720 -
75折
看不見的戰場:社群、AI 與企業資安危機$750$563 -
79折
AI 精準提問 × 高效應用:DeepSeek、ChatGPT、Claude、Gemini、Copilot 一本搞定$390$308 -
7折
超實用!Word.Excel.PowerPoint 辦公室 Office 365 省時高手必備 50招, 4/e (暢銷回饋版)$420$294 -
75折
裂縫碎光:資安數位生存戰$550$412 -
日本當代最強插畫 2025 : 150位當代最強畫師豪華作品集$640$576 -
79折
Google BI 解決方案:Looker Studio × AI 數據驅動行銷實作,完美整合 Google Analytics 4、Google Ads、ChatGPT、Gemini$630$498 -
79折
超有料 Plus!職場第一實用的 AI 工作術 - 用對 AI 工具、自動化 Agent, 讓生產力全面進化!$599$473 -
75折
從零開始學 Visual C# 2022 程式設計, 4/e (暢銷回饋版)$690$518 -
75折
Windows 11 制霸攻略:圖解 AI 與 Copilot 應用,輕鬆搞懂新手必學的 Windows 技巧$640$480 -
75折
精準駕馭 Word!論文寫作絕非難事 (好評回饋版)$480$360 -
Sam Yang 的插畫藝術:用 Procreate / PS 畫出最強男友視角 x 女孩美好日常$699$629 -
79折
AI 加持!Google Sheets 超級工作流$599$473 -
78折
想要 SSR? 快使用 Nuxt 吧!:Nuxt 讓 Vue.js 更好處理 SEO 搜尋引擎最佳化(iThome鐵人賽系列書)$780$608 -
78折
超實用!業務.總管.人資的辦公室 WORD 365 省時高手必備 50招 (第二版)$500$390 -
7折
Node-RED + YOLO + ESP32-CAM:AIoT 智慧物聯網與邊緣 AI 專題實戰$680$476 -
79折
「生成式⇄AI」:52 個零程式互動體驗,打造新世代人工智慧素養$599$473 -
7折
Windows APT Warfare:惡意程式前線戰術指南, 3/e$720$504 -
75折
我輩程式人:回顧從 Ada 到 AI 這條程式路,程式人如何改變世界的歷史與未來展望 (We, Programmers: A Chronicle of Coders from Ada to AI)$850$637 -
75折
不用自己寫!用 GitHub Copilot 搞定 LLM 應用開發$600$450 -
79折
Tensorflow 接班王者:Google JAX 深度學習又快又強大 (好評回饋版)$780$616 -
79折
GPT4 會你也會 - 共融機器人的多模態互動式情感分析 (好評回饋版)$700$553 -
79折
技術士技能檢定 電腦軟體應用丙級術科解題教本|Office 2021$460$363 -
75折
Notion 與 Notion AI 全能實戰手冊:生活、學習與職場的智慧策略 (暢銷回饋版)$560$420
相關主題
商品描述
"以大規模深度學習模型超參調優為代表的評估代價昂貴的多目標優化問題被稱為昂貴的多目標優化問題(Expensive MOPs)。昂貴的多目標優化問題廣泛存在於現實世界中的不同應用領域。其優化目標通常為黑盒函數,且求得其真實目標函數值的評估代價高昂;而現實世界的有限資源和成本只允許求解器進行有限次函數評估,用於搜索該類問題的帕累托前沿。多目標貝葉斯優化方法能有效地求解該類問題,其利用高斯過程代理模型近似原優化問題以降低函數評估成本,並使用能平衡利用和探索之間關系的獲取函數推薦候選解。本書關註大模型超參調優這類昂貴的多目標優化問題,針對其經典的求解方法(貝葉斯優化方法)開展理論方法探索。針對低維和高維決策空間中的並行化函數評估問題、獲取函數優化效率問題以及維度災難和邊界問題,本書對多目標貝葉斯優化方法進行四方面的研究,旨在有效地求解低維和高維昂貴的多目標優化問題。 本書可作為當前大模型超參調優理論研究與應用實踐的指導書,也可作為演化學習、智能優化、大數據及人工智能等相關專業的教材和參考書。 "
作者簡介
徐華,博士,2003年畢業於清華大學計算機科學與技術系,現為清華大學計算機科學與技術系長聘副教授,博士生導師。從事多模態智能信息處理、智能優化和共融機器人智能控制等研究工作。擔任愛思唯爾(Elsevier)開放期刊Intelligent Systems with Applications首任主編,權威期刊Expert Systems with Applications副主編。完成國家科技重大專項課題3項,國家自然科學基金項目4項,國家973項目二級課題2項,國家863項目(課題)5項,國際500強企業(寶潔、西門子、安捷倫等)合作項目13項。目前已在本專業領域權威國際期刊和AAAI、ACL、ACMMM等頂級會議上發表學術論文100餘篇。獲得國家科技進步獎二等獎1項(集體獎),北京市科學技術獎一等獎1項,北京市科學技術獎二等獎1項(集體獎),北京市科學技術獎三等獎1項,重慶市科技進步獎三等獎1項,中國物流與採購聯合會科技發明獎一等獎1項,中國物流與採購聯合會科學技術獎一等獎1項。作為主講教師,主講清華大學全校性課程“數據挖掘:方法與應用”“工業數據挖掘與分析”“因特網產品設計”等課程。獨立編寫專著和教材5本,其中《演化機器學習》是國內首部演化機器學習領域的學術專著;《面向共融機器人的自然交互——人機對話意圖理解》是國內首部共融機器人自然交互領域的學術專著;《數據挖掘:方法與應用》和《數據挖掘:方法與應用——應用案例》已經被國內眾多高校選用為配套教材,並獲得清華大學優秀教材(2020年)二等獎。
目錄大綱
目錄
第1章概述1
1.1研究背景1
1.2昂貴的多目標優化問題3
1.3研究現狀分析5
1.3.1低維多目標貝葉斯優化方法5
1.3.2高維多目標貝葉斯優化方法10
1.4本書的主要研究內容12
1.5本書的結構安排14
第2章背景知識15
2.1基本概念15
2.2貝葉斯優化16
2.3高斯過程18
2.3.1均值函數和核函數選擇19
2.3.2超參數選擇20
2.4獲取函數21
2.4.1期望改進22
2.4.2知識梯度23
2.4.3熵搜索和預測熵搜索27
2.4.4多步最優獲取函數28
2.5標準合成的多目標測試問題29
2.6多目標優化方法的評價指標30
2.7本章小結33
第3章研究綜述34
3.1綜述部分的總體結構34
3.2相關研究工作34
3.2.1高維優化34
3.2.2組合優化37
3.2.3噪聲和魯棒優化38
3.2.4昂貴的約束優化41
3.2.5多目標優化43
3.2.6多任務優化46
3.2.7多保真度優化49
3.2.8遷移學習/元學習50
3.2.9並行/批次貝葉斯優化52
3.3本章小結53
目錄 多目標貝葉斯優化——面向大模型的超參調優理論〖2〗〖2〗 〖1〗 第4章基於自適應採樣的批量多目標貝葉斯優化方法54
4.1引言54
4.2ParEGO簡介與局限性分析55
4.3基於自適應採樣的批量多目標貝葉斯優化的研究方法56
4.3.1算法框架57
4.3.2初始化58
4.3.3函數評估與目標函數聚合58
4.3.4獲取函數58
4.3.5自適應批量採樣60
4.3.6高斯模型及更新62
4.4實驗63
4.4.1實驗設置63
4.4.2標準合成測試集上的對比結果65
4.4.3採樣策略對算法性能的影響74
4.5神經網絡超參調優任務案例分析77
4.5.1問題描述78
4.5.2實驗結果與分析78
4.6本章小結81
第5章基於塊坐標更新的高維多目標貝葉斯優化方法82
5.1引言82
5.2基於塊坐標更新的高維多目標貝葉斯優化的研究方法83
5.2.1算法框架83
5.2.2初始化84
5.2.3函數評估與目標函數聚合85
5.2.4塊坐標更新87
5.2.5貪心獲取函數89
5.2.6高斯模型及候選解推薦90
5.3實驗91
5.3.1實驗設置91
5.3.2標準合成測試集上的對比結果92
5.3.3塊坐標更新對決策空間降維的影響100
5.3.4貪心獲取函數對平衡收斂性與多樣性的影響103
5.3.5塊大小d對算法性能的影響106
5.3.6上下文向量對算法性能的影響108
5.4本章小結109
第6章基於可加高斯結構的高維多目標貝葉斯優化方法111
6.1引言111
6.2ADDGPUCB簡介與局限性分析112
6.3基於可加高斯結構的高維多目標貝葉斯優化的研究方法114
6.3.1算法框架114
6.3.2初始化115
6.3.3函數評估與目標函數聚合116
6.3.4決策空間劃分學習116
6.3.5可加高斯模型117
6.3.6可加雙目標獲取函數和候選解推薦118
6.3.7模型更新119
6.4實驗120
6.4.1實驗設置120
6.4.2標準合成測試集上的對比結果121
6.4.3可加雙目標獲取函數對算法性能的影響125
6.5本章小結127
第7章基於變量交互分析的高維多目標貝葉斯優化方法128
7.1引言128
7.2基於變量交互分析的高維多目標貝葉斯優化的研究方法129
7.2.1算法框架129
7.2.2初始化與函數評估131
7.2.3可分多目標問題重定義131
7.2.4決策空間劃分學習131
7.2.5多目標可加高斯模型133
7.2.6候選解推薦134
7.2.7模型更新135
7.3實驗135
7.3.1實驗設置135
7.3.2標準合成測試集上的對比結果136
7.3.3獲取函數對算法性能的影響137
7.4本章小結139
第8章智能交通領域優化問題案例分析140
8.1問題描述140
8.1.1汽車側面碰撞問題140
8.1.2帶有偏好信息的汽車駕駛室設計問題141
8.2實驗結果與分析142
8.2.1汽車側面碰撞問題的結果分析143
8.2.2帶有偏好信息的汽車駕駛室設計問題的結果分析143
8.3本章小結145
第9章未來研究工作展望146
9.1分佈式貝葉斯優化146
9.2聯邦貝葉斯優化147
9.3動態優化147
9.4異構評估148
9.5算法公平性148
9.6非平穩優化149
9.7負遷移150
第10章全書總結151
參考文獻153
附錄178
英文對照表178
圖索引180
表索引182



