TensorFlow 機器學習實用指南 Machine Learning Using TensorFlow Cookbook: Over 60 recipes on machine learning using deep learning solutions from Kaggle Masters and Google Developer
Alexia Audevart Kon 譯者 羅倩倩
- 出版商: 北京航空航天大學
- 出版日期: 2023-09-01
- 定價: $714
- 售價: 8.5 折 $607
- 語言: 簡體中文
- 頁數: 327
- 裝訂: 平裝
- ISBN: 7512441509
- ISBN-13: 9787512441507
-
相關分類:
TensorFlow
- 此書翻譯自: Machine Learning Using TensorFlow Cookbook: Over 60 recipes on machine learning using deep learning solutions from Kaggle Masters and Google Developer
立即出貨 (庫存 < 4)
買這商品的人也買了...
-
Python 深度學習 (Python Deep Learning)$620$484 -
$458PHP 從入門到項目實踐(超值版) -
$305JavaScript + jQuery 交互式 Web 前端開發 -
$378MySQL 入門很輕松 (微課超值版) -
$473MySQL 從入門到精通 (微視頻精編版) -
$473PHP從入門到精通(微視頻精編版) -
機器學習的統計基礎 : 深度學習背後的核心技術$680$537 -
Python 大數據專案 X 工程 X 產品 資料工程師的升級攻略$700$553 -
深度學習: 邁向 Meta Learning$880$440 -
高手叫我不要教的 ─ H模型:兩個指標,百倍獲利, 2/e$680$537 -
深度強化學習$779$740 -
$458BERT 基礎教程:Transformer 大模型實戰 -
深度強化學習實戰 用 OpenAI Gym 構建智能體$419$398 -
$1,223矩陣力量 (線性代數全彩圖解 + 微課 + Python 編程) -
$347多語言情感分析及其應用 -
$301面向深度學習和大數據的軌道交通軸承故障智能診斷方法 -
$602工業大數據與知識圖譜 -
14天自造量子電腦 (Python版)$539$512 -
C++ 軟體設計|高品質軟體的設計原則和模式 (C++ Software Design: Design Principles and Patterns for High-Quality Software)$780$616 -
$602預測模型實戰:基於R、SPSS和Stata -
$178深度學習框架及系統部署實戰(微課視頻版) -
$301機器學習的算法分析和實踐 -
$270艾博士:深入淺出人工智能 -
輕量又漂亮的 Python Web 框架 - Streamlit AI 時代非學不可$690$545 -
讓 AI 好好說話!從頭打造 LLM (大型語言模型) 實戰秘笈$680$537
中文年末書展|繁簡參展書2書75折 詳見活動內容 »
-
75折
為你寫的 Vue Components:從原子到系統,一步步用設計思維打造面面俱到的元件實戰力 (iThome 鐵人賽系列書)$780$585 -
75折
BDD in Action, 2/e (中文版)$960$720 -
75折
看不見的戰場:社群、AI 與企業資安危機$750$563 -
79折
AI 精準提問 × 高效應用:DeepSeek、ChatGPT、Claude、Gemini、Copilot 一本搞定$390$308 -
7折
超實用!Word.Excel.PowerPoint 辦公室 Office 365 省時高手必備 50招, 4/e (暢銷回饋版)$420$294 -
75折
裂縫碎光:資安數位生存戰$550$412 -
85折
日本當代最強插畫 2025 : 150位當代最強畫師豪華作品集$640$544 -
79折
Google BI 解決方案:Looker Studio × AI 數據驅動行銷實作,完美整合 Google Analytics 4、Google Ads、ChatGPT、Gemini$630$498 -
79折
超有料 Plus!職場第一實用的 AI 工作術 - 用對 AI 工具、自動化 Agent, 讓生產力全面進化!$599$473 -
75折
從零開始學 Visual C# 2022 程式設計, 4/e (暢銷回饋版)$690$518 -
75折
Windows 11 制霸攻略:圖解 AI 與 Copilot 應用,輕鬆搞懂新手必學的 Windows 技巧$640$480 -
75折
精準駕馭 Word!論文寫作絕非難事 (好評回饋版)$480$360 -
Sam Yang 的插畫藝術:用 Procreate / PS 畫出最強男友視角 x 女孩美好日常$699$629 -
79折
AI 加持!Google Sheets 超級工作流$599$473 -
78折
想要 SSR? 快使用 Nuxt 吧!:Nuxt 讓 Vue.js 更好處理 SEO 搜尋引擎最佳化(iThome鐵人賽系列書)$780$608 -
75折
超實用!業務.總管.人資的辦公室 WORD 365 省時高手必備 50招 (第二版)$500$375 -
7折
Node-RED + YOLO + ESP32-CAM:AIoT 智慧物聯網與邊緣 AI 專題實戰$680$476 -
79折
「生成式⇄AI」:52 個零程式互動體驗,打造新世代人工智慧素養$599$473 -
7折
Windows APT Warfare:惡意程式前線戰術指南, 3/e$720$504 -
75折
我輩程式人:回顧從 Ada 到 AI 這條程式路,程式人如何改變世界的歷史與未來展望 (We, Programmers: A Chronicle of Coders from Ada to AI)$850$637 -
75折
不用自己寫!用 GitHub Copilot 搞定 LLM 應用開發$600$450 -
79折
Tensorflow 接班王者:Google JAX 深度學習又快又強大 (好評回饋版)$780$616 -
79折
GPT4 會你也會 - 共融機器人的多模態互動式情感分析 (好評回饋版)$700$553 -
79折
技術士技能檢定 電腦軟體應用丙級術科解題教本|Office 2021$460$363 -
75折
Notion 與 Notion AI 全能實戰手冊:生活、學習與職場的智慧策略 (暢銷回饋版)$560$420
相關主題
商品描述
本書將教你如何使用TensorFlow進行複雜的數據計算,並會讓你比以往任何時候都深入地挖掘和獲得對數據的見解。
在本書的幫助下,你將學到訓練模型、模型評估、迴歸分析、表格資料、圖像以及文字處理和預測等內容。
你將使用版本的Google機器學習庫TensorFlow探索RNN、CNN、GAN和強化學習。
透過實際範例,你將獲得使用TensorFlow解決各種數據問題和技術的實際經驗。
一旦你熟悉並適應了TensorFlow生態系統,你將會看到如何將它投入生產。
讀完本書,你將會熟練使用TensorFlow 2.x進行機器學習,
也將對深度學習有很好的見解,並且能夠在現實場景中實現機器學習演算法。
本書可作為資料科學家、機器學習開發人員、
深度學習研究人員和具有基本統計背景的希望使用神經網絡並發現TensorFlow結構及其新特性的開發人員的參考書。
如果你想要充分利用本書,就需要掌握Python程式語言的相關知識。
目錄大綱
第1章TensorFlow 2.x入門
1.1 TensorFlow如何運作
1.2 宣告變量與張量
1.3 使用eager execution
1.4 使用矩陣
1.5 宣告操作
1.6 使用啟動函數
1.7 使用資料來源
1.8 其他資源
第2章TensorFlow操作
2.1 使用eager execution
2.2 分層嵌套操作
2.3 使用多個層
2.4 實現損失函數
2.5 實現反向傳播
2.6 使用批量和隨機訓練
2.7 結合所有內容
第3章Keras
3.1 概述
3.2 理解Keras層
3.3 使用Keras Sequential API
3.4 使用Keras Functional API
3.5 使用Keras Subclassing API
3.6 使用Keras Preprocessing API
第4章線性迴歸
4.1 學習利用TensorFlow進行線性迴歸
4.2 將Keras模型轉換為Estimator
4.3 理解線性迴歸中的損失函數
4.4 實作Lasso與Ridge迴歸
4.5 訴諸邏輯迴歸
4.6 訴諸邏輯迴歸
4.非線性解決方案
4.7 使用Wide&Deep模型
第5章增強樹
第6章神經網絡
6.1 實現操作門
6.2 使用閘和激活函數
6.3 使用單層神經網絡
6.4 實現不同的層
6.5 使用多層網絡
6.6 改進線性模型的預測
6.7 學習玩Tic-Tac-Toe遊戲
第7章使用表格資料進行預測
7.1 處理數值資料
7.2 處理日期
7.3 處理分類資料
7.4 處理序列資料
7.5 處理高基數分類資料
7.6 連接所有操作
7.7 建立一個資料產生器
7.8 為表格資料創建自訂激活
7.9 對難題進行測試
第8章捲積神經網絡
8.1 介紹
8.2 實現簡單的CNN
8.3 實現先進的CNN
8.4 重新訓練現有的CNN模型
8.5 應用StyleNet和神經式項目
8.6 實現DeepDream
第9章遞歸神經網絡
9.1 文本生成
9.2 情緒分類
9.3 股票價格預測
9.4 Open-domain問答
9.5 總結
第10章Transformer
10.1 文本生成
10.2 情感分析
10.3 Open-domain問答第ll章使用TensorFlow和TF-Agent進行情感分析10.3 Open-domain問答
第ll章使用TensorFlow和TF-Agent進行情感分析
11.1 強化
11.2 CartPole
11.3 多臂老虎機問題
第12章TensorFlow的應用
12.1 在TensorBoard中的可視化
12.2 使用TensorBoard的HParams管理超參數優化
12.3 實現單元測試 12.4
使用多個執行程序 12.5
平行化 TensorFlow服務
