買這商品的人也買了...
-
無瑕的程式碼 - 敏捷軟體開發技巧守則 (Clean Code: A Handbook of Agile Software Craftsmanship)$580$452 -
$280特徵工程入門與實踐 (Feature Engineering Made Easy) -
NumPy 高速運算徹底解說 - 六行寫一隻程式?你真懂深度學習?手工算給你看!$750$638 -
$534數據結構和算法 Python 和 C++ 語言描述 -
統計學習要素:機器學習中的數據挖掘、推斷與預測, 2/e (The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2/e)$954$906 -
$356Django 3.0 入門與實踐 -
必學!Python 資料科學‧機器學習最強套件 - NumPy、Pandas、Matplotlib、OpenCV、scikit-learn、tf.Keras$680$537 -
$336零基礎學 Python — 基於 PyCharm IDE -
$556圖表示學習 -
$407Python 密碼學編程 -
$505深入淺出 Pandas:利用 Python 進行數據處理與分析 -
$765Python 常用統計算法 -
跟著 Docker 隊長,修練 22天就精通 - 搭配 20小時作者線上教學,無縫接軌 Microservices、Cloud-native、Serverless、DevOps 開發架構$880$695 -
$374AI 遊戲開發和深度學習進階 -
$407從 Power BI 到 Analysis Services:企業級數據分析實戰 -
$458算法入門 (用 Python 編程和實踐) -
$517Keras 深度學習:入門、實戰與進階 -
超越多顯卡多機器:分散式機器學習超速實戰$1,000$790 -
$602深入理解 Django:框架內幕與實現原理 -
Python 資料分析必備套件!Pandas 資料清理、重塑、過濾、視覺化 (Pandas 1.x Cookbook, 2/e)$780$663 -
突破困境!企業開源虛擬化管理平台:使用 Proxmox Virtual Environment (iThome鐵人賽系列書)$620$484 -
黑帽 Python|給駭客與滲透測試者的 Python 開發指南, 2/e (Black Hat Python : Python Programming for Hackers and Pentesters, 2/e)$450$356 -
AutoML 自動化機器學習:用 AutoKeras 超輕鬆打造高效能 AI 模型 (Automated Machine Learning with AutoKeras: Deep learning made accessible for everyone with just few lines of coding)$690$545 -
GPU 編程實戰 : 基於 Python 和 CUDA (Hands-On GPU Programming with Python and CUDA: Boost your application's performance and productivity with CUDA: Explore high-performance parallel computing with CUDA)$479$455 -
Python AI 人員必修的科學計算 - 數學、機率、統計、演算$880$695
中文年末書展|繁簡參展書2書75折 詳見活動內容 »
-
75折
為你寫的 Vue Components:從原子到系統,一步步用設計思維打造面面俱到的元件實戰力 (iThome 鐵人賽系列書)$780$585 -
75折
BDD in Action, 2/e (中文版)$960$720 -
75折
看不見的戰場:社群、AI 與企業資安危機$750$563 -
79折
AI 精準提問 × 高效應用:DeepSeek、ChatGPT、Claude、Gemini、Copilot 一本搞定$390$308 -
7折
超實用!Word.Excel.PowerPoint 辦公室 Office 365 省時高手必備 50招, 4/e (暢銷回饋版)$420$294 -
75折
裂縫碎光:資安數位生存戰$550$412 -
日本當代最強插畫 2025 : 150位當代最強畫師豪華作品集$640$576 -
79折
Google BI 解決方案:Looker Studio × AI 數據驅動行銷實作,完美整合 Google Analytics 4、Google Ads、ChatGPT、Gemini$630$498 -
79折
超有料 Plus!職場第一實用的 AI 工作術 - 用對 AI 工具、自動化 Agent, 讓生產力全面進化!$599$473 -
75折
從零開始學 Visual C# 2022 程式設計, 4/e (暢銷回饋版)$690$518 -
75折
Windows 11 制霸攻略:圖解 AI 與 Copilot 應用,輕鬆搞懂新手必學的 Windows 技巧$640$480 -
75折
精準駕馭 Word!論文寫作絕非難事 (好評回饋版)$480$360 -
Sam Yang 的插畫藝術:用 Procreate / PS 畫出最強男友視角 x 女孩美好日常$699$629 -
79折
AI 加持!Google Sheets 超級工作流$599$473 -
78折
想要 SSR? 快使用 Nuxt 吧!:Nuxt 讓 Vue.js 更好處理 SEO 搜尋引擎最佳化(iThome鐵人賽系列書)$780$608 -
78折
超實用!業務.總管.人資的辦公室 WORD 365 省時高手必備 50招 (第二版)$500$390 -
7折
Node-RED + YOLO + ESP32-CAM:AIoT 智慧物聯網與邊緣 AI 專題實戰$680$476 -
79折
「生成式⇄AI」:52 個零程式互動體驗,打造新世代人工智慧素養$599$473 -
7折
Windows APT Warfare:惡意程式前線戰術指南, 3/e$720$504 -
75折
我輩程式人:回顧從 Ada 到 AI 這條程式路,程式人如何改變世界的歷史與未來展望 (We, Programmers: A Chronicle of Coders from Ada to AI)$850$637 -
75折
不用自己寫!用 GitHub Copilot 搞定 LLM 應用開發$600$450 -
79折
Tensorflow 接班王者:Google JAX 深度學習又快又強大 (好評回饋版)$780$616 -
79折
GPT4 會你也會 - 共融機器人的多模態互動式情感分析 (好評回饋版)$700$553 -
79折
技術士技能檢定 電腦軟體應用丙級術科解題教本|Office 2021$460$363 -
75折
Notion 與 Notion AI 全能實戰手冊:生活、學習與職場的智慧策略 (暢銷回饋版)$560$420
相關主題
商品描述
Python因其擁有強大的第三方軟件庫,廣泛應用在人工智能開發、科學計算和數據分析中。
而pandas就是一款基於NumPy的解決Python數據分析任務的軟件庫。
在機器學習和數據科學中,因為很少有數據可以直接使用,所以對數據進行預處理就成為必不可少的工作。
《Pandas數據預處理詳解》就利用數據處理必需的pandas庫,從pandas基本操作、數據結構,
到pandas將執行的各種任務,如匯總統計信息、檢查缺失值/異常值/重複數據以及合併和分組數據等,
通過簡單易懂的示例,對預處理的基礎知識和各種預處理方法進行了透徹講解。
學完本書,讀者將能夠順利執行各種機器學習和數據分析任務。
本書特別適合作為機器學習工程師、
數據科學及科研工作者初學數據預處理的參考書,也適合作為案頭手冊,隨時翻閱查看。
作者簡介
日本Lombard增田秀人
Lombard公司AI戰略室室長先後在舊金山和東南亞創業,於2017年創建了機器學習學校“codexa”。
企業培訓講師,曾在xPython Meet Up & Conference 2019發表演講。
目錄大綱
目錄
第1章 pandas的概要與Python的基本操作
1.1 機器學習領域中的剛需庫——pandas
1.1.1 何謂pandas
1.1.2 pandas的主要功能
1.2 構建pandas的使用環境
1.2.1 三種構建環境下的工具包和軟件
1.2.2 在Windows操作系統中構建
1.2.3 在macOS中安裝程序
1.2.4 Google Colab平臺
1.3 Python的數據結構
1.3.1 為何在機器學習中使用Python
1.3.2 變量
1.3.3 運算符
1.3.4 動態類型
1.3.5 數值類型
1.3.6 字符串類型
1.3.7 元組
1.3.8 列表
1.3.9 字典
1.3.10 集合
1.4 Python的基本操作
1.4.1 if語句
1.4.2 while語句
1.4.3 for語句
1.4.4 break語句與continue語句
1.4.5 函數
1.5 Jupyter Notebook的基本操作
1.5.1 代碼補全功能
1.5.2 對像類型信息查看
1.5.3 魔法命令
第2章 pandas的數據結構
2.1 Series
2.1.1 Series的概要
2.1.2 Series的基本操作
2.2 DataFrame對象
2.2.1 DataFrame對象的概要
2.2.2 DataFrame的基本操作
2.3 索引
2.3.1 索引的概要
2.3.2 索引的基本操作
2.4 pandas的初次接觸
2.4.1 數據集的概要
2.4.2 數據的讀人
2.4.3 數據的顯示
2.4.4 數據的引用
2.4.5 數據的排序
2.4.6 缺失數據的處理
2.4.7 數據的分組
2.4.8 數據的合併
2.4.9 數據的可視化
第3章 數據的應用於讀取
3.1 數據的引用
3.1.1 引用數據的方法
3.1.2 切片
3.1.3 屬性的引用
3.1.4 bool類型的引用
3.1.5 where方法
3.1.6 query方法
3.2 文件的讀取與寫入
3.2.1 CSV
3.2.2 Excel
3.2.3 JSON
3.2.4 HDF5
第4章 數據的聚合與排序
4.1 數據的聚合
4.1.1 最小值與最大值
4.1.2 平均值、中位數和眾數
4.1.3 標準差
4.1.4 分位數
4.1.5 累積和與累積積
4.1.6 分箱處理
4.1.7 概括統計量
4.1.8 數據透視表
4.1.9 交叉表
4.2 數據的排序
4.2.1 基於標籤的排序
4.2.2 基於元素的排序
第5章 數據變形
5.1 行和列的添加與刪除
5.1.1 添加行和列
5.1.2 刪除行和列
5.2 數據的連接與合併
5.2.1 concat函數
5.2.2 merge函數
5.3 其他的數據變形
5.3.1 隨機抽樣
5.3.2 虛擬變量
5.3.3 長型數據和寬型數據的變形
第6章 缺失值、離群值和重複數據
6.1 缺失值
6.1.1 pandas與缺失數據
6.1.2 缺失值的確認
6.1.3 缺失值的刪除
6.1.4 缺失值的置換
6.2 離群值
6.2.1 何謂離群值
6.2.2 z分數
6.2.3 四分位距
6.2.4 箱形圖
6.3 重複數據
6.3.1 重複數據的檢測
6.3.2 重複數據的刪除
第7章 函數應用與分組化
7.1 函數處理
7.1.1 apply方法
7.1.2 DataFrame類和Series類的agg方法
7.1.3 applymap方法
7.1.4 pipe方法
7.2 基於for語句的循環處理
7.2.1 Series對象的循環處理
7.2.2 DataFrame對象的循環處理
7.3 數據的分組
7.3.1 GroupBy對象
7.3.2 GroupBy對象的agg方法
7.3.3 transfom方法
7.3.4 apply方法
第8章 其他操作
8.1 字符串操作
8.1.1 str屬性
8.1.2 字符串的分割
8.1.3 字符串的替換
8.1.4 字符串的提取
8.1.5 字符串的模式匹配
8.1.6 從字符串到虛擬變量
8.2 數據的可視化
8.2.1 plot方法
8.2.2 條形圖
8.2.3 直方圖
8.2.4 散點圖
8.2.5 餅形圖
8.2.6 箱形圖
8.2.7 散點圖矩陣
8.2.8 缺失值的處理
8.3 多重索引
8.3.1 多重索引的基本操作
8.3.2 多重索引的統計
8.3.3 多重索引的連接與合併
8.4 時間序列數據
8.4.1 datetime模塊
8.4.2 處理pandas時間序列數據的對象
8.4.3 時間序列數據的索引引用
8.4.4 時間序列數據的轉換
第9章 數據分析的基礎
9.1 探索性數據分析
9.1.1 數據結構的確認
9.1.2 缺失值、離群值和重複數據的確認
9.1.3 基於數據可視化的確認
9.2 整齊數據
9.2.1 整齊數據的概要
9.2.2 將雜亂數據轉換成整齊數據
9.3 數據分析實例——基於Bank Marketing數據集
9.3.1 數據集的概要和數據結構
9.3.2 數據的基本信息
9.3.3 客戶數據分析
9.3.4 營銷活動數據分析
