Learning PyTorch 2.0, Second Edition: Utilize PyTorch 2.3 and CUDA 12 to experiment neural networks and deep learning models
暫譯: 學習 PyTorch 2.0(第二版):利用 PyTorch 2.3 和 CUDA 12 實驗神經網絡與深度學習模型
Rosch, Matthew
- 出版商: Gitforgits
- 出版日期: 2024-10-05
- 售價: $2,660
- 貴賓價: 9.5 折 $2,527
- 語言: 英文
- 頁數: 192
- 裝訂: Quality Paper - also called trade paper
- ISBN: 8119177916
- ISBN-13: 9788119177912
-
相關分類:
DeepLearning、CUDA
海外代購書籍(需單獨結帳)
相關主題
商品描述
"Learning PyTorch 2.0, Second Edition" is a fast-learning, hands-on book that emphasizes practical PyTorch scripting and efficient model development using PyTorch 2.3 and CUDA 12. This edition is centered on practical applications and presents a concise methodology for attaining proficiency in the most recent features of PyTorch. The book presents a practical program based on the fish dataset which provides step-by-step guidance through the processes of building, training and deploying neural networks, with each example prepared for immediate implementation. Given your familiarity with machine learning and neural networks, this book offers concise explanations of foundational topics, allowing you to proceed directly to the practical, advanced aspects of PyTorch programming.
The key learnings include the design of various types of neural networks, the use of torch.compile() for performance optimization, the deployment of models using TorchServe, and the implementation of quantization for efficient inference. Furthermore, you will also learn to migrate TensorFlow models to PyTorch using the ONNX format. The book employs essential libraries, including torchvision, torchserve, tf2onnx, onnxruntime, and requests, to facilitate seamless integration of PyTorch with production environments.
Master tensor manipulations and advanced operations using PyTorch's efficient tensor libraries.
Build feedforward, convolutional, and recurrent neural networks from scratch.
Implement transformer models for modern natural language processing tasks.
Use CUDA 12 and mixed precision training (AMP) to accelerate model training and inference.
Deploy PyTorch models in production using TorchServe, including multi-model serving and versioning.
Migrate TensorFlow models to PyTorch using ONNX format for seamless cross-framework compatibility.
Optimize neural network architectures using torch.compile() for improved speed and efficiency.
Utilize PyTorch's Quantization API to reduce model size and speed up inference.
Setup custom layers and architectures for neural networks to tackle domain-specific problems.
Monitor and log model performance in real-time using TorchServe's built-in tools and configurations.
- Introduction To PyTorch 2.3 and CUDA 12Getting Started with TensorsBuilding Neural Networks with PyTorchTraining Neural NetworksAdvanced Neural Network ArchitecturesQuantization and Model OptimizationMigrating TensorFlow to PyTorchDeploying PyTorch Models with TorchServe
商品描述(中文翻譯)
《學習 PyTorch 2.0,第二版》是一本快速學習、實作導向的書籍,強調使用 PyTorch 2.3 和 CUDA 12 進行實用的 PyTorch 腳本編寫和高效的模型開發。本版以實際應用為中心,提供了一種簡明的方法論,以掌握 PyTorch 最新功能。書中基於魚類數據集提供了一個實用的程序,逐步指導讀者構建、訓練和部署神經網絡的過程,每個範例都準備好立即實施。考慮到您對機器學習和神經網絡的熟悉程度,本書提供了基礎主題的簡明解釋,使您能夠直接進入 PyTorch 編程的實用和高級方面。
主要學習內容包括各類神經網絡的設計、使用 torch.compile() 進行性能優化、使用 TorchServe 部署模型,以及實現量化以提高推理效率。此外,您還將學習如何使用 ONNX 格式將 TensorFlow 模型遷移到 PyTorch。本書使用包括 torchvision、torchserve、tf2onnx、onnxruntime 和 requests 在內的基本庫,以促進 PyTorch 與生產環境的無縫集成。
主要學習內容
掌握使用 PyTorch 高效的張量庫進行張量操作和高級操作。
從零開始構建前饋、卷積和遞歸神經網絡。
為現代自然語言處理任務實現變壓器模型。
使用 CUDA 12 和混合精度訓練(AMP)加速模型訓練和推理。
使用 TorchServe 在生產環境中部署 PyTorch 模型,包括多模型服務和版本控制。
使用 ONNX 格式將 TensorFlow 模型遷移到 PyTorch,以實現無縫的跨框架兼容性。
使用 torch.compile() 優化神經網絡架構,以提高速度和效率。
利用 PyTorch 的量化 API 減少模型大小並加快推理速度。
設置自定義層和架構以解決特定領域的問題。
使用 TorchServe 的內建工具和配置實時監控和記錄模型性能。
目錄
1. PyTorch 2.3 和 CUDA 12 簡介
2. 開始使用張量
3. 使用 PyTorch 構建神經網絡
4. 訓練神經網絡
5. 高級神經網絡架構
6. 量化和模型優化
7. 將 TensorFlow 遷移到 PyTorch
8. 使用 TorchServe 部署 PyTorch 模型