Generative AI with Kubernetes: Implementing secure and observable AI infrastructure to deliver reliable AI applications (English Edition)
暫譯: 使用 Kubernetes 的生成式 AI:實現安全且可觀察的 AI 基礎架構以交付可靠的 AI 應用程式(英文版)

Baier, Jonathan

  • 出版商: BPB Publications
  • 出版日期: 2025-02-28
  • 售價: $1,940
  • 貴賓價: 9.5$1,843
  • 語言: 英文
  • 頁數: 284
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 9365898323
  • ISBN-13: 9789365898323
  • 相關分類: Kubernetes人工智慧
  • 海外代購書籍(需單獨結帳)

商品描述

DESCRIPTION

Over the past few years, we have seen leaps and strides in ML and most recently generative AI. Companies and software teams are rushing to enhance, rebuild, and create new software offerings with this new intelligence. As they innovate and create delightful new experiences for their customers new challenges arise. Understanding how these applications work and how to use state-of-the-art infrastructure tools like Kubernetes will help organizations and professionals succeed with this new technology.

The book covers essential technical implementations from ML fundamentals through advanced deployment strategies, focusing on practical patterns. Core topics include Kubernetes-native GPU scheduling and resource management, MLOps pipeline architectures using Kubeflow/MLflow, and advanced model serving patterns. It details data management architectures, vector databases, and RAG systems, alongside monitoring solutions with Prometheus/Grafana. Finally, we will look at some advanced concerns for production in the realm of security and data reliability.

After reading this book, you will be equipped with a broad knowledge of the end-to-end generative AI pipeline and how Kubernetes can be leveraged to run your generative AI workloads at scale in the real-world.

KEY FEATURES

● Learn how Kubernetes can help you run your generative AI workloads.

● Using hands-on examples, you will work with real-world foundational models and a variety of tools and capabilities in the K8s ecosystem.

● A broad survey of both generative AI and Kubernetes in one book.

WHAT YOU WILL LEARN

● How to evaluate and compare models for new applications and use cases.

● How Kubernetes can add reliability and scale to your AI applications.

● What does an AI delivery pipeline contain and how to start one.

● How AI models encode words and work with natural language.

● How prompting and refinement techniques can improve results.

● How to use your own data to augment AI responses.

WHO THIS BOOK IS FOR

This book is for teams building new applications or new functionality with generative AI, but want to better understand the infrastructure needed to bring their AI applications to production. This book is also for shared services, infrastructure, or cybersecurity teams who provide platforms and infrastructure for application, or product development.

商品描述(中文翻譯)

描述
在過去幾年中,我們見證了機器學習(ML)和最近的生成式人工智慧(generative AI)取得的重大進展。公司和軟體團隊正急於利用這種新智能來增強、重建和創造新的軟體產品。隨著他們的創新和為客戶創造愉悅的新體驗,新的挑戰也隨之而來。了解這些應用程式的運作方式以及如何使用像 Kubernetes 這樣的先進基礎設施工具,將幫助組織和專業人士在這項新技術中取得成功。

本書涵蓋了從機器學習基礎到高級部署策略的基本技術實現,重點在於實用模式。核心主題包括 Kubernetes 原生的 GPU 調度和資源管理、使用 Kubeflow/MLflow 的 MLOps 管道架構,以及高級模型服務模式。它詳細介紹了數據管理架構、向量數據庫和 RAG 系統,以及使用 Prometheus/Grafana 的監控解決方案。最後,我們將探討在安全性和數據可靠性方面的生產環境中的一些高級問題。

閱讀本書後,您將具備對端到端生成式人工智慧管道的廣泛知識,以及如何利用 Kubernetes 在現實世界中大規模運行您的生成式人工智慧工作負載。

主要特點
・了解 Kubernetes 如何幫助您運行生成式人工智慧工作負載。
・通過實作範例,您將與現實世界的基礎模型以及 K8s 生態系統中的各種工具和功能進行操作。
・一本書中廣泛調查生成式人工智慧和 Kubernetes。

您將學到什麼
・如何評估和比較新應用程式和用例的模型。
・Kubernetes 如何為您的人工智慧應用程式增加可靠性和擴展性。
・人工智慧交付管道包含什麼,以及如何啟動一個。
・人工智慧模型如何編碼單詞並處理自然語言。
・如何使用提示和精煉技術來改善結果。
・如何使用您自己的數據來增強人工智慧的回應。

本書適合誰
本書適合正在使用生成式人工智慧構建新應用程式或新功能的團隊,但希望更好地了解將其人工智慧應用程式投入生產所需的基礎設施。本書也適合提供應用程式或產品開發平台和基礎設施的共享服務、基礎設施或網路安全團隊。

最後瀏覽商品 (20)