Continuous Machine Learning with Kubeflow: Performing Reliable MLOps with Capabilities of TFX, Sagemaker and Kubernetes (English Edition)
暫譯: 持續機器學習與 Kubeflow:利用 TFX、Sagemaker 和 Kubernetes 進行可靠的 MLOps

Choudhury, Aniruddha

  • 出版商: Bpb Publications
  • 出版日期: 2021-12-20
  • 售價: $1,500
  • 貴賓價: 9.5$1,425
  • 語言: 英文
  • 頁數: 330
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 9389898501
  • ISBN-13: 9789389898507
  • 相關分類: KubernetesMakerMachine Learning
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

An insightful journey to MLOps, DevOps, and Machine Learning in the real environment.

KEY FEATURES

● Extensive knowledge and concept explanation of Kubernetes components with examples.

● An all-in-one knowledge guide to train and deploy ML pipelines using Docker and Kubernetes.

● Includes numerous MLOps projects with access to proven frameworks and the use of deep learning concepts.

DESCRIPTION

'Continuous Machine Learning with Kubeflow' introduces you to the modern machine learning infrastructure, which includes Kubernetes and the Kubeflow architecture. This book will explain the fundamentals of deploying various AI/ML use cases with TensorFlow training and serving with Kubernetes and how Kubernetes can help with specific projects from start to finish.


This book will help demonstrate how to use Kubeflow components, deploy them in GCP, and serve them in production using real-time data prediction. With Kubeflow KFserving, we'll look at serving techniques, build a computer vision-based user interface in streamlit, and then deploy it to the Google cloud platforms, Kubernetes and Heroku. Next, we also explore how to build Explainable AI for determining fairness and biasness with a What-if tool. Backed with various use-cases, we will learn how to put machine learning into production, including training and serving.

WHAT YOU WILL LEARN

● Get comfortable with the architecture and the orchestration of Kubernetes.

● Learn to containerize and deploy from scratch using Docker and Google Cloud Platform.

● Practice how to develop the Kubeflow Orchestrator pipeline for a TensorFlow model.

● Create AWS SageMaker pipelines, right from training to deployment in production.

● Build the TensorFlow Extended (TFX) pipeline for an NLP application using Tensorboard and TFMA.


WHO THIS BOOK IS FOR

This book is for MLOps, DevOps, Machine Learning Engineers, and Data Scientists who want to continuously deploy machine learning pipelines and manage them at scale using Kubernetes. The readers should have a strong background in machine learning and some knowledge of Kubernetes is required.

商品描述(中文翻譯)

深入探索 MLOps、DevOps 及機器學習在實際環境中的應用。

主要特色

● 詳盡的 Kubernetes 元件知識與概念解釋,並附有範例。

● 一個全面的知識指南,用於使用 Docker 和 Kubernetes 訓練及部署機器學習管道。

● 包含多個 MLOps 專案,並提供經過驗證的框架及深度學習概念的應用。

書籍描述

《使用 Kubeflow 的持續機器學習》將帶您了解現代機器學習基礎設施,包括 Kubernetes 和 Kubeflow 架構。本書將解釋如何使用 TensorFlow 在 Kubernetes 上訓練和服務各種 AI/ML 使用案例的基本原則,以及 Kubernetes 如何從頭到尾協助特定專案。


本書將幫助您展示如何使用 Kubeflow 元件,將其部署在 GCP 上,並使用實時數據預測在生產環境中提供服務。透過 Kubeflow KFserving,我們將探討服務技術,建立基於計算機視覺的用戶界面,並將其部署到 Google Cloud 平台、Kubernetes 和 Heroku。接下來,我們還將探索如何使用 What-if 工具構建可解釋的 AI,以確定公平性和偏見。透過各種使用案例,我們將學習如何將機器學習投入生產,包括訓練和服務。

您將學到什麼

● 熟悉 Kubernetes 的架構和編排。

● 學習如何使用 Docker 和 Google Cloud Platform 從零開始容器化和部署。

● 實踐如何為 TensorFlow 模型開發 Kubeflow Orchestrator 管道。

● 創建 AWS SageMaker 管道,從訓練到生產部署。

● 使用 Tensorboard 和 TFMA 為 NLP 應用構建 TensorFlow Extended (TFX) 管道。


本書適合誰閱讀

本書適合希望持續部署機器學習管道並使用 Kubernetes 進行大規模管理的 MLOps、DevOps、機器學習工程師和數據科學家。讀者應具備堅實的機器學習背景,並需具備一定的 Kubernetes 知識。