Infinite-Dimensional Lie Algebras
暫譯: 無限維李代數
Amayo, R. K., Stewart, Ian
- 出版商: Springer
- 出版日期: 2011-12-09
- 售價: $2,360
- 貴賓價: 9.5 折 $2,242
- 語言: 英文
- 頁數: 436
- 裝訂: Quality Paper - also called trade paper
- ISBN: 9401023077
- ISBN-13: 9789401023078
-
相關分類:
離散數學 Discrete-mathematics
海外代購書籍(需單獨結帳)
商品描述
It is only in recent times that infinite-dimensional Lie algebras have been the subject of other than sporadic study, with perhaps two exceptions: Cartan's simple algebras of infinite type, and free algebras. However, the last decade has seen a considerable increase of interest in the subject, along two fronts: the topological and the algebraic. The former, which deals largely with algebras of operators on linear spaces, or on manifolds modelled on linear spaces, has been dealt with elsewhere*). The latter, which is the subject of the present volume, exploits the surprising depth of analogy which exists between infinite-dimen- sional Lie algebras and infinite groups. This is not to say that the theory consists of groups dressed in Lie-algebraic clothing. One of the tantalising aspects of the analogy, and one which renders it difficult to formalise, is that it extends to theorems better than to proofs. There are several cases where a true theorem about groups translates into a true theorem about Lie algebras, but where the group-theoretic proof uses methods not available for Lie algebras and the Lie-theoretic proof uses methods not available for groups. The two theories tend to differ in fine detail, and extra variations occur in the Lie algebra case according to the underlying field. Occasionally the analogy breaks down altogether. And of course there are parts of the Lie theory with no group-theoretic counterpart.
商品描述(中文翻譯)
最近,無限維李代數才成為除了偶爾研究之外的主題,或許有兩個例外:卡坦(Cartan)的無限類型簡單代數和自由代數。然而,過去十年對這一主題的興趣顯著增加,主要集中在兩個方面:拓撲學和代數學。前者主要處理線性空間或以線性空間為模型的流形上的算子代數,這部分已在其他地方討論過*)。後者是本卷的主題,利用了無限維李代數與無限群之間存在的驚人類比的深度。這並不是說理論是穿著李代數服裝的群體。類比的一個引人入勝的方面,也是使其難以形式化的原因在於,它在定理上表現得比在證明上更好。有幾個情況下,關於群的真實定理可以轉化為關於李代數的真實定理,但群論的證明使用了李代數無法使用的方法,而李理論的證明則使用了群無法使用的方法。這兩種理論在細節上往往有所不同,根據基礎域的不同,李代數的情況下還會出現額外的變化。偶爾,類比會完全失效。當然,李理論中也有一些部分沒有群論的對應物。