Equilibrium Statistical Mechanics of Lattice Models
暫譯: 晶格模型的平衡統計力學

Lavis, David A.

  • 出版商: Springer
  • 出版日期: 2015-02-12
  • 售價: $6,210
  • 貴賓價: 9.5$5,900
  • 語言: 英文
  • 頁數: 793
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 9401794294
  • ISBN-13: 9789401794299
  • 相關分類: 熱力學 Thermodynamics
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Most interesting and difficult problems in equilibrium statistical mechanics concern models which exhibit phase transitions. For graduate students and more experienced researchers this book provides an invaluable reference source of approximate and exact solutions for a comprehensive range of such models.
Part I contains background material on classical thermodynamics and statistical mechanics, together with a classification and survey of lattice models. The geometry of phase transitions is described and scaling theory is used to introduce critical exponents and scaling laws. An introduction is given to finite-size scaling, conformal invariance and Schramm--Loewner evolution.
Part II contains accounts of classical mean-field methods. The parallels between Landau expansions and catastrophe theory are discussed and Ginzburg--Landau theory is introduced. The extension of mean-field theory to higher-orders is explored using the Kikuchi--Hijmans--De Boer hierarchy of approximations.
In Part III the use of algebraic, transformation and decoration methods to obtain exact system information is considered. This is followed by an account of the use of transfer matrices for the location of incipient phase transitions in one-dimensionally infinite models and for exact solutions for two-dimensionally infinite systems. The latter is applied to a general analysis of eight-vertex models yielding as special cases the two-dimensional Ising model and the six-vertex model. The treatment of exact results ends with a discussion of dimer models.
In Part IV series methods and real-space renormalization group transformations are discussed. The use of the De Neef--Enting finite-lattice method is described in detail and applied to the derivation of series for a number of model systems, in particular for the Potts model. The use of Pad\'e, differential and algebraic approximants to locate and analyze second- and first-order transitions is described. The realization of the ideasof scaling theory by the renormalization group is presented together with treatments of various approximation schemes including phenomenological renormalization.
Part V of the book contains a collection of mathematical appendices intended to minimise the need to refer to other mathematical sources.

商品描述(中文翻譯)

大多數有趣且困難的平衡統計力學問題涉及顯示相變的模型。對於研究生和更有經驗的研究人員來說,本書提供了一個寶貴的參考來源,涵蓋了各種模型的近似解和精確解。

第一部分包含有關經典熱力學和統計力學的背景材料,以及對晶格模型的分類和調查。描述了相變的幾何學,並使用縮放理論引入臨界指數和縮放定律。還介紹了有限大小縮放、共形不變性和Schramm--Loewner演化。

第二部分包含經典均場方法的介紹。討論了Landau展開和災變理論之間的平行關係,並介紹了Ginzburg--Landau理論。探討了均場理論向高階的擴展,使用Kikuchi--Hijmans--De Boer近似層級。

在第三部分,考慮使用代數、變換和裝飾方法來獲得精確的系統信息。接著介紹了轉移矩陣在一維無限模型中定位初始相變和在二維無限系統中獲得精確解的應用。後者應用於對八頂點模型的總體分析,特別情況下得到了二維Ising模型和六頂點模型。精確結果的處理以對二聚體模型的討論結束。

第四部分討論了級數方法和實空間重整化群變換。詳細描述了De Neef--Enting有限晶格方法的使用,並應用於推導多個模型系統的級數,特別是Potts模型。描述了使用Padé、微分和代數近似來定位和分析二階和一階相變的過程。重整化群實現縮放理論的思想,並介紹了各種近似方案的處理,包括現象學重整化。

本書的第五部分包含一系列數學附錄,旨在減少參考其他數學來源的需求。