Matrix-Based Introduction to Multivariate Data Analysis
暫譯: 基於矩陣的多變量數據分析入門
Kohei Adachi
- 出版商: Springer
- 出版日期: 2016-10-19
- 售價: $3,840
- 貴賓價: 9.5 折 $3,648
- 語言: 英文
- 頁數: 301
- 裝訂: Hardcover
- ISBN: 9811023409
- ISBN-13: 9789811023408
-
相關分類:
Data Science
海外代購書籍(需單獨結帳)
商品描述
This book enables readers who may not be familiar with matrices to understand a variety of multivariate analysis procedures in matrix forms. Another feature of the book is that it emphasizes what model underlies a procedure and what objective function is optimized for fitting the model to data. The author believes that the matrix-based learning of such models and objective functions is the fastest way to comprehend multivariate data analysis. The text is arranged so that readers can intuitively capture the purposes for which multivariate analysis procedures are utilized: plain explanations of the purposes with numerical examples precede mathematical descriptions in almost every chapter.
This volume is appropriate for undergraduate students who already have studied introductory statistics. Graduate students and researchers who are not familiar with matrix-intensive formulations of multivariate data analysis will also find the book useful, as it is based on modern matrix formulations with a special emphasis on singular value decomposition among theorems in matrix algebra.
The book begins with an explanation of fundamental matrix operations and the matrix expressions of elementary statistics, followed by the introduction of popular multivariate procedures with advancing levels of matrix algebra chapter by chapter. This organization of the book allows readers without knowledge of matrices to deepen their understanding of multivariate data analysis.
商品描述(中文翻譯)
本書使得不熟悉矩陣的讀者能夠理解各種以矩陣形式呈現的多變量分析程序。書中的另一個特點是強調每個程序背後所依據的模型以及為了將模型擬合到數據上所優化的目標函數。作者認為,基於矩陣的學習這些模型和目標函數是理解多變量數據分析的最快方式。文本的安排使得讀者能夠直觀地捕捉多變量分析程序的用途:幾乎每一章都以數字範例的簡單解釋來引入目的,然後再進入數學描述。
本書適合已經學習過基礎統計的本科生。對於不熟悉多變量數據分析中矩陣密集公式的研究生和研究人員來說,本書也將是有用的,因為它基於現代矩陣公式,特別強調矩陣代數中的奇異值分解定理。
本書首先解釋基本的矩陣運算和初等統計的矩陣表達,接著逐章介紹流行的多變量程序,並逐步提高矩陣代數的難度。這樣的書籍組織使得沒有矩陣知識的讀者能夠加深對多變量數據分析的理解。