Principal Component Analysis Networks and Algorithms
暫譯: 主成分分析網絡與演算法
Xiangyu Kong, Changhua Hu, Zhansheng Duan
- 出版商: Springer
- 出版日期: 2017-01-13
- 售價: $6,670
- 貴賓價: 9.5 折 $6,337
- 語言: 英文
- 頁數: 323
- 裝訂: Hardcover
- ISBN: 981102913X
- ISBN-13: 9789811029134
-
相關分類:
Machine Learning
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
How to Break Web Software: Functional and Security Testing of Web Applications and Web Services (Paperback)$2,070$1,967 -
VBA For Dummies, 5/e (Paperback)$1,410$1,340 -
Mastering VBA for Microsoft Office 2013 (Paperback)$1,870$1,777 -
XSS 網站安全技術與實務 : 防護解密剖析大進擊$480$374 -
Effective Python 中文版 | 寫出良好 Python 程式的 59 個具體做法 (Effective Python: 59 Specific Ways to Write Better Python)$450$356 -
Object Pascal Handbook$1,800$1,710 -
Getting Started with Lazarus and Free Pascal: A beginners and intermediate guide to Free Pascal using Lazarus IDE$1,180$1,121 -
Python 程式設計「超入門」$420$357 -
Nonlinear Principal Component Analysis and Its Applications (SpringerBriefs in Statistics)$2,750$2,613 -
離散數學, 2/e$720$706 -
寫程式前就該懂的演算法 ─ 資料分析與程式設計人員必學的邏輯思考術 (Grokking Algorithms: An illustrated guide for programmers and other curious people)$390$308 -
Hyper-V 虛擬化技術企業現場實戰, 2/e$560$476 -
Python 資料科學與人工智慧應用實務$650$553 -
Programming Bitcoin$2,470$2,340 -
VMware vSphere 6.7 私有雲建置實戰$520$411 -
2020 超新版計算機概論 -- 邁向資訊新世代 (全工科適用)$650$553 -
不會 C 也是資安高手:用 Python 和駭客大戰三百回合$620$490 -
Inside Blockchain, Bitcoin, and Cryptocurrencies (Hardcover)$2,100$1,995 -
深度學習|生命科學應用 (Deep Learning for the Life Sciences)$580$458 -
Bitcoin and Lightning Network on Raspberry Pi: Running Nodes on Pi3, Pi4 and Pi Zero$1,663$1,575 -
微積分勝典 (微積分究竟在說什麼?進階版)$550$495 -
初學 Jetson Nano 不說 No:CAVEDU 教你一次懂$480$480 -
$607Go 語言高級開發與實戰 -
$352Rust 編程從入門到實戰 -
輕鬆學量子程式設計|從量子位元到量子演算法$520$411
相關主題
商品描述
This book not only provides a comprehensive introduction to neural-based PCA methods in control science, but also presents many novel PCA algorithms and their extensions and generalizations, e.g., dual purpose, coupled PCA, GED, neural based SVD algorithms, etc. It also discusses in detail various analysis methods for the convergence, stabilizing, self-stabilizing property of algorithms, and introduces the deterministic discrete-time systems method to analyze the convergence of PCA/MCA algorithms. Readers should be familiar with numerical analysis and the fundamentals of statistics, such as the basics of least squares and stochastic algorithms. Although it focuses on neural networks, the book only presents their learning law, which is simply an iterative algorithm. Therefore, no a priori knowledge of neural networks is required. This book will be of interest and serve as a reference source to researchers and students in applied mathematics, statistics, engineering, and other related fields.
商品描述(中文翻譯)
本書不僅提供了控制科學中基於神經網絡的主成分分析(PCA)方法的全面介紹,還介紹了許多新穎的PCA演算法及其擴展和一般化,例如雙重目的、耦合PCA、GED、基於神經網絡的奇異值分解(SVD)演算法等。它還詳細討論了各種分析方法,以研究演算法的收斂性、穩定性和自穩定性,並引入了確定性離散時間系統的方法來分析PCA/MCA演算法的收斂性。讀者應該熟悉數值分析和統計學的基本原理,例如最小二乘法和隨機演算法的基礎知識。雖然本書專注於神經網絡,但僅介紹其學習法則,這只是一種迭代演算法。因此,無需具備神經網絡的知識。本書將對應用數學、統計學、工程學及其他相關領域的研究人員和學生具有興趣,並作為參考資料。
