Dual-Polarization Two-Port Fiber-Optic Gyroscope
暫譯: 雙極化雙端口光纖陀螺儀

Wang, Zinan

  • 出版商: Springer
  • 出版日期: 2018-07-29
  • 售價: $4,110
  • 貴賓價: 9.5$3,905
  • 語言: 英文
  • 頁數: 93
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 9811097178
  • ISBN-13: 9789811097171
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This thesis demonstrates and investigates novel dual-polarization interferometric fiber-optic gyroscope (IFOG) configurations, which utilize optical compensation between two orthogonal polarizations to suppress errors caused by polarization nonreciprocity. Further, it provides a scheme for dual-polarization two-port IFOGs and details their unique benefits.

Dual-polarization IFOGs break through the restriction of the "minimal scheme," which conventional IFOGs are based on. These innovative new IFOGs have unique properties: They require no polarizer and have two ports available for signal detection. As such, they open new avenues for IFOGs to achieve lower costs and higher sensitivity.


商品描述(中文翻譯)

這篇論文展示並研究了新穎的雙極化干涉光纖陀螺儀(IFOG)配置,利用兩個正交極化之間的光學補償來抑制由極化非互易性引起的誤差。此外,論文提供了一種雙極化雙端口IFOG的方案,並詳細說明了其獨特的優勢。

雙極化IFOG突破了傳統IFOG所基於的「最小方案」的限制。這些創新的新型IFOG具有獨特的特性:它們不需要偏振器,並且有兩個端口可用於信號檢測。因此,它們為IFOG開辟了實現更低成本和更高靈敏度的新途徑。

作者簡介

Zinan Wang Sept.22, 1988 Data Center (Beijing), Agricultural Bank of China

The author has been studied fiber-optical sensors since 2008. In recent years, his researches mainly focus on the interferometric fiber-optic gyroscope (IFOG). His research achievements include novel structures and optimized signal processing methods for IFOGs. Especially, he discovers the optical compensation mechanism for IFOGs, together with his research group. With this mechanism, polarization errors can be efficiently suppressed within dual-polarization IFOGs.

Selected Publications

[1]Z. Wang, Y. Yang, Y. Li, X. Yu, Z. Zhang, and Z. Li. Quadrature demodulation with synchronous difference for interferometric fiber-optic gyroscopes. Opt Express, 2012, 20: 25421-25431

[2]Z. Wang, Y. Yang, P. Lu, Y. Li, D. Zhao, C. Peng, Z. Zhang, and Z. Li. All-Depolarized Interferometric Fiber-Optic Gyroscope Based on Optical Compensation. IEEE Photon J, 2014, 6: 7100208

[3]Z. Wang, Y. Yang, P. Lu, C. Liu, D. Zhao, C. Peng, Z. Zhang, and Z. Li. Optically compensated polarization reciprocity in interferometric fiber-optic gyroscopes. Opt Express, 2014, 22: 4908-4919

[4]Z. Wang, Y. Yang, P. Lu, R. Luo, Y. Li, D. Zhao, C. Peng, and Z. Li. Dual-polarization interferometric fiber-optic gyroscope with an ultra-simple configuration. Opt Lett, 2014, 39: 2463-2466

[5]Y. Yang, Z. Wang, and Z. Li. Optically compensated dual-polarization interferometric fiber-optic gyroscope. Opt Lett, 2012, 37: 2841-2843

[6]Y. Yang, Z. Wang, C. Peng and Z. Li. Unbiasedness of simultaneous independent measurement. Meas Sci Technol, 2012, 23: 085005

[7]Y. Yang, Z. Wang, C. Peng and Z. Li. Multidimensional gray-wavelet processing in interferometric fiber-optic gyroscopes. Meas Sci Technol, 2013, 24: 115203

[8]Y. Li, Z. Wang, Y. Yang, C. Peng, Z. Zhang, and Z. Li. A multi-frequency signal processing method for fiber-optic gyroscopes with square wave modulation. Opt Express, 2014, 22: 1608-1618

[9]Y. Li, Z. Wang, C. Peng, Z. Li. Signal subspace analysis for decoherent processes during interferometric fiber-optic gyroscopes using synchronous adaptive filters. Appl Optics, 2014, 53: 6853-6860

[10]P. Lu, Z. Wang, Y. Yang, D. Zhao, S. Xiong, Y. Li, C. Peng, and Z. Li. Multiple Optical Compensation in Interferometric Fiber-optic Gyroscope for Polarization Nonreciprocal Error Suppression. IEEE Photon J, 2014, 6: 7200608

[11]P. Lu, Z. Wang, R. Luo, D. Zhao, C. Peng, and Z. Li. Polarization nonreciprocity suppression of dual-polarization fiber-optic gyroscope under temperature variation. Opt Lett, 2014, 40: 1826-1829

[12]Z. Wang, Y. Yang, P. Lu, Y. Li, C. Peng, Z. Zhang, and Z. Li. Optical compensation for compressing polarization nonreciprocity induced errors in interferometric fiber-optic gyroscopes. Appl Mech Mater, 2013, 303: 82-85

[14]Z. Wang, C. Wang, Y. Wang, D. Wang, Y. Sun, L. X, and Z. Li, Optical fiber rotation sensing based on inscribed multi-point-coupling resonance loop structure slow light system. Infrar Laser Eng, 2011, 40: 2492-2496

[15]Z. Wang, D. Zhao, Y. Yang, C. Liu, P. Lu, M. Zhang, C. Peng, Z. Zhang, and Z. Li. Minimal Scheme for Optically Compensated Interferometric Fiber-optic Gyroseopes. J Applied Sci, 2013, 13: 1392-1386

[16]Z. Wang, Y. Wang, and Z. Li. Study on transit time online measurement of fiber-optic gyroscope based on narrow pulse modulation. Infrar Laser Eng (Supplement), 2010, 39: 841-844

[17]Z. Wang, X. Wu, C. Peng, R. Hui, X. Luo, Z. Li. and A. Xu, The Trend of Designing Rotation Sensors Based on Highly Dispersive Resonating Structures. Piers Online, 2008, 4(8): 859-865

[18]Y. Yang, Z. Wang, L. Xu, C. Wang, L. Jia, X. Yu, S. Shao, and Z. Li. Highly sensitive rotation sensing based on orthogonal fiber-optic structures. Proc of SPIE, 2011, 8191: 81910

[19]C. Liu, Z. Wang, Q. Cheng, H. Osman, C. Peng, Y. Yang, Z. Zhang, and Z. Li. A new optical fiber acoustic sensor based on air backing mandrel type fiber optic hydrophone. Appl Mech Mater, 2013, 303: 55-58

[20]Y. Li, Z. Wang, D. Zhao, Y. Yang, M. Liu, C. Peng, Z. Zhang, and Z. Li. Balance orthogonal demodulation with combined adaptive optimization for interferometric fiber optic gyroscopes. Appl Mech Mater, 2013, 303: 63-66

[21]Y. Li, Z. Wang, M. Liu, C. Liu, L. Ni, Z. Li, and Y. Zhang. Design and test of prototype attitude control system as telescope stabilizer with fiber optic gyroscopes. 2013 Seventh International Conference on Sensing Technology, IEEE, 2013, 650-654

[22]Y. Yang, S. Xiong, Z. Wang, Y. Li, C. Liu, C. Peng, Z. Zhang, and Z. Li. Improved frequency shifting realization for the delayed self-heterodyne interferometric linewidth measurement. Appl Mech Mater, 2013, 303: 843-846

[23]C. Wang, D. Wang, Z. Wang, P. Lu, L. Xu, X. Yu, Y. Jiang, L. Zhu, and Z. Li. Experimental study on narrow linewidth fiber ring laser based on parallel feedback mechanism. Proc of SPIE, 2011, 8192: 81922

[24]Q. Yu, L. Xu, Z. Wang, P. Lu, C. Wang, D. Wang, Y. Yang, Y. Jiang, L. Zhu, and Z. Li. Novel ring resonator structures generating coupled resonator-induced transparency. Proc of SPIE, 2011, 8191: 81910

[25]L. X, Y. Sun, D. Wang, Z. Wang, and Z. Li. Method of coupled ring resonator's transmission curve detection by using Mach-Zehnder interferometer. Infrar Laser Eng, 2011, 40: 949-952

[26]D. Wang, C. Wang, L. Xu, Y. Wang, X. Yu, Z.Wang, and Z. Li. Fiber laser longitudinal mode selection using common resonant cavity. Infrar Laser Eng, 2011, 40: 1044-1048


作者簡介(中文翻譯)

Zinan Wang 1988年9月22日 中國農業銀行數據中心(北京)

作者自2008年以來一直研究光纖傳感器。近年來,他的研究主要集中在干涉光纖陀螺儀(IFOG)上。他的研究成果包括IFOG的新型結構和優化的信號處理方法。特別是,他與研究小組一起發現了IFOG的光學補償機制。通過這一機制,可以有效抑制雙極化IFOG中的偏振誤差。

選定出版物

[1] Z. Wang, Y. Yang, Y. Li, X. Yu, Z. Zhang, and Z. Li. 使用同步差分的四分量解調技術於干涉光纖陀螺儀。Opt Express, 2012, 20: 25421-25431

[2] Z. Wang, Y. Yang, P. Lu, Y. Li, D. Zhao, C. Peng, Z. Zhang, and Z. Li. 基於光學補償的全去極化干涉光纖陀螺儀。IEEE Photon J, 2014, 6: 7100208

[3] Z. Wang, Y. Yang, P. Lu, C. Liu, D. Zhao, C. Peng, Z. Zhang, and Z. Li. 干涉光纖陀螺儀中的光學補償偏振互易性。Opt Express, 2014, 22: 4908-4919

[4] Z. Wang, Y. Yang, P. Lu, R. Luo, Y. Li, D. Zhao, C. Peng, and Z. Li. 具有超簡單配置的雙極化干涉光纖陀螺儀。Opt Lett, 2014, 39: 2463-2466

[5] Y. Yang, Z. Wang, and Z. Li. 光學補償的雙極化干涉光纖陀螺儀。Opt Lett, 2012, 37: 2841-2843

[6] Y. Yang, Z. Wang, C. Peng and Z. Li. 同時獨立測量的無偏性。Meas Sci Technol, 2012, 23: 085005

[7] Y. Yang, Z. Wang, C. Peng and Z. Li. 干涉光纖陀螺儀中的多維灰小波處理。Meas Sci Technol, 2013, 24: 115203

[8] Y. Li, Z. Wang, Y. Yang, C. Peng, Z. Zhang, and Z. Li. 一種用於光纖陀螺儀的多頻信號處理方法,具有方波調製。Opt Express, 2014, 22: 1608-1618

[9] Y. Li, Z. Wang, C. Peng, Z. Li. 使用同步自適應濾波器的干涉光纖陀螺儀中去相干過程的信號子空間分析。Appl Optics, 2014, 53: 6853-6860

[10] P. Lu, Z. Wang, Y. Yang, D. Zhao, S. Xiong, Y. Li, C. Peng, and Z. Li. 用於偏振非互易誤差抑制的干涉光纖陀螺儀中的多重光學補償。IEEE Photon J, 2014, 6: 7200608

[11] P. Lu, Z. Wang, R. Luo, D. Zhao, C. Peng, and Z. Li. 在溫度變化下的雙極化光纖陀螺儀的偏振非互易性抑制。Opt Lett, 2014, 40: 1826-1829

[12] Z. Wang, Y. Yang, P. Lu, Y. Li, C. Peng, Z. Zhang, and Z. Li. 用於壓縮干涉光纖陀螺儀中由偏振非互易性引起的誤差的光學補償。Appl Mech Mater, 2013, 303: 82-85

[14] Z. Wang, C. Wang, Y. Wang, D. Wang, Y. Sun, L. X, and Z. Li. 基於刻寫多點耦合共振環結構慢光系統的光纖旋轉傳感。Infrar Laser Eng, 2011, 40: 2492-2496

[15] Z. Wang, D. Zhao, Y. Yang, C. Liu, P. Lu, M. Zhang, C. Peng, Z. Zhang, and Z. Li. 光學補償干涉光纖陀螺儀的最小方案。J Applied Sci, 2013, 13: 1392-1386

[16] Z. Wang, Y. Wang, and Z. Li. 基於窄脈衝調製的光纖陀螺儀的通過時間在線測量研究。Infrar Laser Eng (Supplement), 2010, 39: 841-844

[17] Z. Wang, X. Wu, C. Peng, R. Hui, X. Luo, Z. Li. 和 A. Xu, 基於高色散共振結構的旋轉傳感器設計趨勢。Piers Online, 2008, 4(8): 859-865

[18] Y. Yang, Z. Wang, L. Xu, C. Wang, L. Jia, X. Yu, S. Shao, and Z. Li. 基於正交光纖結構的高靈敏度旋轉傳感。Proc of SPIE, 2011, 8191: 81910

[19] C. Liu, Z. Wang, Q. Cheng, H. Osman, C. Peng, Y. Yang, Z. Zhang, and Z. Li. 一種基於空氣背衬的光纖水聽器的新型光纖聲學傳感器。Appl Mech Mater, 2013, 303: 55-58

[20] Y. Li, Z. Wang, D. Zhao, Y. Yang, M. Liu, C. Peng, Z. Zhang, and Z. Li. 用於干涉光纖陀螺儀的平衡正交解調,結合自適應優化。Appl Mech Mater, 2013, 303: 63-66

[21] Y. Li, Z. Wang, M. Liu, C. Liu, L. Ni, Z. Li, and Y. Zhang. 作為光纖陀螺儀的望遠鏡穩定器的原型姿態控制系統的設計與測試。2013年第七屆國際傳感技術會議,IEEE, 2013, 650-654

[22] Y. Yang, S. Xiong, Z. Wang, Y. Li, C. Liu, C. Peng, Z. Zhang, and Z. Li. 改進的頻率偏移實現,用於延遲自異頻干涉線寬測量。Appl Mech Mater, 2013, 303: 843-846

[23] C. Wang, D. Wang, Z. Wang, P. Lu, L. Xu, X. Yu, Y. Jiang, L. Zhu, and Z. Li. 基於平行反饋機制的窄線寬光纖環激光器的實驗研究。Proc of SPIE, 2011, 8192: 81922

[24] Q. Yu, L. Xu, Z. Wang, P. Lu, C. Wang, D. Wang, Y. Yang, Y. Jiang, L. Zhu, and Z. Li. 產生耦合共振器誘導透明的新型環共振器結構。Proc of SPIE, 2011, 8191: 81910

[25] L. X, Y. Sun, D. Wang, Z. Wang, and Z. Li. 使用Mach-Zehnder干涉儀檢測耦合環共振器的傳輸曲線的方法。Infrar Laser Eng, 2011, 40: 949-952

[26] D. Wang, C. Wang, L. Xu, Y. Wang, X. Yu, Z. Wang, and Z. Li. 使用共用共振腔的光纖激光器縱向模式選擇。Infrar Laser Eng, 2011, 40: 1044-1048