Lectures on Deformation Quantisation
暫譯: 變形量子化講座
Georgy Igorevich Sharygin
- 出版商: World Scientific Pub
- 出版日期: 2025-06-27
- 售價: $5,320
- 貴賓價: 9.5 折 $5,054
- 語言: 英文
- 頁數: 400
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 9811297800
- ISBN-13: 9789811297809
-
相關分類:
量子計算
海外代購書籍(需單獨結帳)
相關主題
商品描述
Principles of classical Hamiltonian mechanics say that the evolution of a dynamical system is determined by the Poisson bracket of observable functions with the given Hamiltonian function of the system. In Quantum Mechanics, these principles are modified so that the algebra of observable functions should be replaced by a noncommutative algebra of operators and the Poisson bracket by their commutator so that the canonical commutation relations hold. Thus, working with quantum systems, we must determine the 'quantization' of our observables, i.e. to choose a noncommutative algebra whose elements would play the role of the observables. With some modifications, this question is the main content of the Deformation Quantization problem formulated in 1978 by Flato and others.This book is based on the course that the author taught in the Fall semester of 2019 at Peking University. The main purpose of that course and of this book is to acquaint the reader with the vast scope of ideas related to the Deformation Quantization of Poisson manifolds. The book begins with Quantum Mechanics and Moyal product formula and covers the three main constructions that solve the Deformation Quantization problem: Lecomte and de Wilde deformation of symplectic manifolds, Fedosov's quantization theory and Kontsevich's formality theorem. In the appendices, the Tamarkin's proof of formality theorem is outlined.The book is written in a reader-friendly manner and is as self-contained as possible. It includes several sets of problems and exercises that will help the reader to master the material.
商品描述(中文翻譯)
古典哈密頓力學的原則指出,動態系統的演化由可觀測函數與系統給定的哈密頓函數的泊松括號決定。在量子力學中,這些原則被修改,使得可觀測函數的代數應該被非交換代數的算子所取代,而泊松括號則被它們的對易子所取代,以使得正規對易關係成立。因此,在處理量子系統時,我們必須確定我們的可觀測量的「量子化」,即選擇一個非交換代數,其元素將扮演可觀測量的角色。經過一些修改,這個問題是1978年由Flato等人提出的變形量子化問題的主要內容。本書基於作者在2019年秋季學期於北京大學教授的課程。該課程和本書的主要目的是讓讀者熟悉與泊松流形的變形量子化相關的廣泛思想。本書從量子力學和Moyal乘積公式開始,涵蓋了解決變形量子化問題的三個主要構造:Lecomte和de Wilde對辛流形的變形、Fedosov的量子化理論以及Kontsevich的形式性定理。在附錄中,概述了Tamarkin對形式性定理的證明。本書以讀者友好的方式撰寫,並盡可能自成一體。它包括幾組問題和練習,幫助讀者掌握材料。