Spatially Explicit Hyperparameter Optimization for Neural Networks
暫譯: 神經網絡的空間明確超參數優化
Zheng, Minrui
- 出版商: Springer
- 出版日期: 2021-10-19
- 售價: $6,040
- 貴賓價: 9.5 折 $5,738
- 語言: 英文
- 頁數: 130
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 9811653984
- ISBN-13: 9789811653988
海外代購書籍(需單獨結帳)
相關主題
商品描述
Neural networks as the commonly used machine learning algorithms, such as artificial neural networks (ANNs) and convolutional neural networks (CNNs), have been extensively used in the GIScience domain to explore the nonlinear and complex geographic phenomena. However, there are a few studies that investigate the parameter settings of neural networks in GIScience. Moreover, the model performance of neural networks often depends on the parameter setting for a given dataset. Meanwhile, adjusting the parameter configuration of neural networks will increase the overall running time. Therefore, an automated approach is necessary for addressing these limitations in current studies. This book proposes an automated spatially explicit hyperparameter optimization approach to identify optimal or near-optimal parameter settings for neural networks in the GIScience field. Also, the approach improves the computing performance at both model and computing levels. This book is written for researchers of the GIScience field as well as social science subjects.
商品描述(中文翻譯)
神經網絡作為常用的機器學習演算法,例如人工神經網絡(ANNs)和卷積神經網絡(CNNs),在地理資訊科學(GIScience)領域中被廣泛應用於探索非線性和複雜的地理現象。然而,針對神經網絡在地理資訊科學中的參數設置進行研究的文獻相對較少。此外,神經網絡的模型性能通常依賴於特定數據集的參數設置。同時,調整神經網絡的參數配置會增加整體運行時間。因此,針對當前研究中的這些限制,採用自動化的方法是必要的。本書提出了一種自動化的空間明確超參數優化方法,以識別地理資訊科學領域中神經網絡的最佳或近最佳參數設置。此外,該方法在模型和計算層面上都提高了計算性能。本書適合地理資訊科學領域的研究人員以及社會科學相關主題的研究者。
作者簡介
Dr. Minrui Zheng is an Associate Professor in the School of Public Administration and Policy at Renmin University of China. She earned her M.S. in mathematical finance and her Ph.D. from the University of North Carolina at Charlotte. She has published over 10 articles in peer-reviewed journals and book chapters, and is a Member of several professional organizations including the American Association of Geographers and the North American Regional Science Council. Her research and teaching interests focus on GIScience, spatial analysis and modeling, machine learning, high-performance and parallel computing, and land change modeling. Her work focuses on using advanced spatial modeling techniques and high-performance and parallel computing to analyze big data-driven spatial problems.
作者簡介(中文翻譯)
鄭敏瑞博士是中國人民大學公共管理與政策學院的副教授。她在北卡羅來納州夏洛特大學獲得數學金融碩士學位及博士學位。她在同行評審的期刊和書籍章節中發表了超過10篇文章,並且是多個專業組織的成員,包括美國地理學會和北美區域科學委員會。她的研究和教學興趣集中在地理資訊科學(GIScience)、空間分析與建模、機器學習、高效能與平行計算以及土地變遷建模。她的工作專注於使用先進的空間建模技術和高效能與平行計算來分析大數據驅動的空間問題。