Infinite-Dimensional Dirac Operators and Supersymmetric Quantum Fields: An Introduction to Analysis on Boson-Fermion Fock Spaces
暫譯: 無限維迪拉克算子與超對稱量子場:玻色-費米福克空間分析入門
Arai, Asao
- 出版商: Springer
- 出版日期: 2022-10-19
- 售價: $2,540
- 貴賓價: 9.5 折 $2,413
- 語言: 英文
- 頁數: 117
- 裝訂: Quality Paper - also called trade paper
- ISBN: 9811956774
- ISBN-13: 9789811956775
-
相關分類:
離散數學 Discrete-mathematics
海外代購書籍(需單獨結帳)
商品描述
This book explains the mathematical structures of supersymmetric quantum field theory (SQFT) from the viewpoints of functional and infinite-dimensional analysis. The main mathematical objects are infinite-dimensional Dirac operators on the abstract Boson-Fermion Fock space. The target audience consists of graduate students and researchers who are interested in mathematical analysis of quantum fields, including supersymmetric ones, and infinite-dimensional analysis. The major topics are the clarification of general mathematical structures that some models in the SQFT have in common, and the mathematically rigorous analysis of them. The importance and the relevance of the subject are that in physics literature, supersymmetric quantum field models are only formally (heuristically) considered and hence may be ill-defined mathematically. From a mathematical point of view, however, they suggest new aspects related to infinite-dimensional geometry and analysis. Therefore, it is important to show the mathematical existence of such models first and then study them in detail. The book shows that the theory of the abstract Boson-Fermion Fock space serves this purpose. The analysis developed in the book also provides a good example of infinite-dimensional analysis from the functional analysis point of view, including a theory of infinite-dimensional Dirac operators and Laplacians.
商品描述(中文翻譯)
本書從泛函分析和無限維分析的角度解釋超對稱量子場論(SQFT)的數學結構。主要的數學對象是抽象的玻色-費米 Fock 空間上的無限維 Dirac 算子。目標讀者包括對量子場的數學分析(包括超對稱量子場)和無限維分析感興趣的研究生和研究人員。主要主題是澄清一些 SQFT 模型所共有的一般數學結構,以及對它們進行數學上嚴謹的分析。這個主題的重要性和相關性在於,在物理文獻中,超對稱量子場模型僅被形式上(啟發性地)考慮,因此在數學上可能是定義不明的。然而,從數學的角度來看,它們暗示了與無限維幾何和分析相關的新方面。因此,首先顯示這些模型的數學存在性是重要的,然後再詳細研究它們。本書顯示抽象的玻色-費米 Fock 空間的理論可以達成這個目的。本書中發展的分析也提供了一個從泛函分析角度看無限維分析的良好範例,包括無限維 Dirac 算子和拉普拉斯算子的理論。
作者簡介
Professor Asao Arai is a Professor Emeritus of Hokkaido University.
作者簡介(中文翻譯)
新井淳教授是北海道大學的名譽教授。