Grammar-Based Feature Generation for Time-Series Prediction (SpringerBriefs in Applied Sciences and Technology)
暫譯: 基於文法的時間序列預測特徵生成 (應用科學與技術系列)
Anthony Mihirana Mihirana De Silva
- 出版商: Springer
- 出版日期: 2015-03-17
- 售價: $2,420
- 貴賓價: 9.5 折 $2,299
- 語言: 英文
- 頁數: 112
- 裝訂: Paperback
- ISBN: 9812874100
- ISBN-13: 9789812874108
海外代購書籍(需單獨結帳)
商品描述
This book proposes a novel approach for time-series prediction using machine learning techniques with automatic feature generation. Application of machine learning techniques to predict time-series continues to attract considerable attention due to the difficulty of the prediction problems compounded by the non-linear and non-stationary nature of the real world time-series. The performance of machine learning techniques, among other things, depends on suitable engineering of features. This book proposes a systematic way for generating suitable features using context-free grammar. A number of feature selection criteria are investigated and a hybrid feature generation and selection algorithm using grammatical evolution is proposed. The book contains graphical illustrations to explain the feature generation process. The proposed approaches are demonstrated by predicting the closing price of major stock market indices, peak electricity load and net hourly foreign exchange client trade volume. The proposed method can be applied to a wide range of machine learning architectures and applications to represent complex feature dependencies explicitly when machine learning cannot achieve this by itself. Industrial applications can use the proposed technique to improve their predictions.
商品描述(中文翻譯)
本書提出了一種新穎的方法,利用機器學習技術進行時間序列預測,並自動生成特徵。由於預測問題的困難,加上現實世界時間序列的非線性和非平穩性,將機器學習技術應用於時間序列預測仍然引起了相當大的關注。機器學習技術的性能在很大程度上取決於特徵的適當工程設計。本書提出了一種系統化的方法,使用無上下文文法生成適合的特徵。探討了多種特徵選擇標準,並提出了一種使用文法演化的混合特徵生成和選擇算法。本書包含圖形插圖以解釋特徵生成過程。所提出的方法通過預測主要股市指數的收盤價、峰值電力負載和每小時外匯客戶交易量來進行演示。該方法可以應用於各種機器學習架構和應用,明確表示複雜的特徵依賴性,當機器學習無法單獨實現時。工業應用可以利用所提出的技術來改善其預測。