-
出版商:
World Scientific Pub
-
出版日期:
2009-10-01
-
售價:
$2,140
-
貴賓價:
9.5 折
$2,033
-
語言:
英文
-
頁數:
236
-
裝訂:
Hardcover - also called cloth, retail trade, or trade
-
ISBN:
9814271209
-
ISBN-13:
9789814271202
-
相關分類:
量子 Quantum
商品描述
This book presents recent and ongoing research work aimed at understanding the mysterious relation between the computations of Feynman integrals in perturbative quantum field theory and the theory of motives of algebraic varieties and their periods. One of the main questions in the field is understanding when the residues of Feynman integrals in perturbative quantum field theory evaluate to periods of mixed Tate motives. The question originates from the occurrence of multiple zeta values in Feynman integrals calculations observed by Broadhurst and Kreimer.Two different approaches to the subject are described. The first, a "bottom-up" approach, constructs explicit algebraic varieties and periods from Feynman graphs and parametric Feynman integrals. This approach, which grew out of work of Bloch-Esnault-Kreimer and was more recently developed in joint work of Paolo Aluffi and the author, leads to algebro-geometric and motivic versions of the Feynman rules of quantum field theory and concentrates on explicit constructions of motives and classes in the Grothendieck ring of varieties associated to Feynman integrals. While the varieties obtained in this way can be arbitrarily complicated as motives, the part of the cohomology that is involved in the Feynman integral computation might still be of the special mixed Tate kind. A second, "top-down" approach to the problem, developed in the work of Alain Connes and the author, consists of comparing a Tannakian category constructed out of the data of renormalization of perturbative scalar field theories, obtained in the form of a Riemann-Hilbert correspondence, with Tannakian categories of mixed Tate motives. The book draws connections between these two approaches and gives an overview of other ongoing directions of research in the field, outlining the many connections of perturbative quantum field theory and renormalization to motives, singularity theory, Hodge structures, arithmetic geometry, supermanifolds, algebraic and non-commutative geometry.The text is aimed at researchers in mathematical physics, high energy physics, number theory and algebraic geometry. Partly based on lecture notes for a graduate course given by the author at Caltech in the fall of 2008, it can also be used by graduate students interested in working in this area.
商品描述(中文翻譯)
本書介紹了近期及持續進行的研究工作,旨在理解在微擾量子場論中,Feynman 積分的計算與代數簇的動機理論及其週期之間的神秘關係。該領域的一個主要問題是理解在微擾量子場論中,Feynman 積分的殘數何時會評估為混合 Tate 動機的週期。這個問題源於 Broadhurst 和 Kreimer 觀察到的 Feynman 積分計算中出現的多重 ζ 值。文中描述了兩種不同的研究方法。第一種是「自下而上」的方法,從 Feynman 圖和參數 Feynman 積分構造明確的代數簇和週期。這種方法源於 Bloch-Esnault-Kreimer 的工作,並在 Paolo Aluffi 和作者的聯合工作中得到更近期的發展,導致了量子場論的 Feynman 規則的代數幾何和動機版本,並集中於與 Feynman 積分相關的 Grothendieck 環中的動機和類的明確構造。雖然以這種方式獲得的代數簇作為動機可以是任意複雜的,但涉及 Feynman 積分計算的同調部分仍可能是特殊的混合 Tate 類型。第二種是「自上而下」的方法,由 Alain Connes 和作者的工作發展而來,這種方法比較了從微擾標量場論的重正化數據構造的 Tannakian 類別(以 Riemann-Hilbert 對應的形式獲得)與混合 Tate 動機的 Tannakian 類別之間的關係。本書將這兩種方法聯繫起來,並概述了該領域其他正在進行的研究方向,勾勒出微擾量子場論和重正化與動機、奇異性理論、Hodge 結構、算術幾何、超流形、代數幾何及非交換幾何之間的許多聯繫。該文本旨在針對數學物理、高能物理、數論和代數幾何的研究人員。部分內容基於作者於 2008 年秋季在加州理工學院教授的研究生課程講義,也可供有興趣在此領域工作的研究生使用。