-
出版商:
Springer
-
出版日期:
2026-01-03
-
售價:
$3,060
-
貴賓價:
9.5 折
$2,907
-
語言:
英文
-
頁數:
213
-
裝訂:
Hardcover - also called cloth, retail trade, or trade
-
ISBN:
9819510082
-
ISBN-13:
9789819510085
-
相關分類:
Machine Learning
商品描述
How can we train powerful machine learning models together--across smartphones, hospitals, or financial institutions--without ever sharing raw data? This book delivers a compelling answer through the lens of federated learning (FL), a cutting-edge paradigm for decentralized, privacy-preserving machine learning. Designed for students, engineers, and researchers, this book offers a principled yet practical roadmap to building secure, scalable, and trustworthy FL systems from scratch. At the heart of this book is a unifying framework that treats FL as a network-regularized optimization problem. This elegant formulation allows readers to seamlessly address personalization, robustness, and fairness--challenges often tackled in isolation. You'll learn how to structure FL networks based on task similarity, leverage graph-based methods and apply distributed optimization techniques to implement FL systems. Detailed pseudocode, intuitive explanations, and implementation-ready algorithms ensure you not only understand the theory but can apply it in real-world systems. Topics such as privacy leakage analysis, model heterogeneity, and adversarial resilience are treated with both mathematical rigor and accessibility. Whether you're building decentralized AI for regulated industries or in settings where data, users, or system conditions change over time, this book equips you to design FL systems that are both performant and trustworthy.
商品描述(中文翻譯)
如何在不共享原始數據的情況下,協同訓練強大的機器學習模型——無論是在智能手機、醫院還是金融機構?本書通過聯邦學習(Federated Learning, FL)的視角提供了一個引人注目的答案,這是一種前沿的去中心化、保護隱私的機器學習範式。本書專為學生、工程師和研究人員設計,提供了一個原則性但實用的路線圖,幫助讀者從零開始構建安全、可擴展且值得信賴的FL系統。
本書的核心是一個統一的框架,將FL視為一個網絡正則化的優化問題。這種優雅的表述使讀者能夠無縫地解決個性化、穩健性和公平性等挑戰,這些挑戰通常是孤立處理的。您將學習如何根據任務相似性結構FL網絡,利用基於圖的方法並應用分佈式優化技術來實現FL系統。詳細的偽代碼、直觀的解釋和可實施的算法確保您不僅理解理論,還能在現實系統中應用它。
隱私洩漏分析、模型異質性和對抗韌性等主題都以數學嚴謹性和可接近性進行處理。無論您是在為受監管行業構建去中心化的人工智慧,還是在數據、用戶或系統條件隨時間變化的環境中,本書都能幫助您設計出既高效又值得信賴的FL系統。
作者簡介
Alexander Jung is Associate Professor of Machine Learning at Aalto University in Finland, where he combines cutting-edge research with a deep passion for teaching. He has supervised over 120 master's theses and was honored with the Teacher of the Year Award by the Department of Computer Science. His research focuses on trustworthy federated learning, decentralized optimization, and signal processing, and he is the author of Machine Learning: The Basics. He earned his PhD from TU Vienna with sub auspiciis Praesidentis rei publicae, the highest academic distinction in Austria, awarded by the Federal President. When not explaining fixed-point iterations or debugging LaTeX macros, he enjoys cycling Austria's wine yard-valleys and Finland's coastlines.
作者簡介(中文翻譯)
亞歷山大·容克是芬蘭阿爾托大學的機器學習副教授,他將尖端研究與對教學的深厚熱情相結合。他指導了超過120篇碩士論文,並因其卓越表現獲得計算機科學系的年度教師獎。他的研究專注於可信的聯邦學習、去中心化優化和信號處理,並且是《機器學習:基礎知識》的作者。 他在維也納科技大學獲得博士學位,並以「sub auspiciis Praesidentis rei publicae」的榮譽畢業,這是奧地利最高的學術榮譽,由聯邦總統頒發。在不解釋不動點迭代或調試LaTeX宏的時候,他喜歡騎自行車穿越奧地利的葡萄園山谷和芬蘭的海岸線。