Elements of Measure and Probability
暫譯: 測度與機率的元素
Bose, Arup
- 出版商: Springer
- 出版日期: 2025-10-02
- 售價: $2,960
- 貴賓價: 9.5 折 $2,812
- 語言: 英文
- 頁數: 308
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 9819527570
- ISBN-13: 9789819527571
-
相關分類:
機率統計學 Probability-and-statistics
海外代購書籍(需單獨結帳)
相關主題
商品描述
This book can serve as a first course on measure theory and measure theoretic probability for upper undergraduate and graduate students of mathematics, statistics and probability. Starting from the basics, the measure theory part covers Caratheodory's theorem, Lebesgue-Stieltjes measures, integration theory, Fatou's lemma, dominated convergence theorem, basics of Lp spaces, transition and product measures, Fubini's theorem, construction of the Lebesgue measure in Rd, convergence of finite measures, Jordan-Hahn decomposition of signed measures, Radon-Nikodym theorem and the fundamental theorem of calculus.
The material on probability covers standard topics such as Borel-Cantelli lemmas, behaviour of sums of independent random variables, 0-1 laws, weak convergence of probability distributions, in particular via moments and cumulants, and the central limit theorem (via characteristic function, and also via cumulants), and ends with conditional expectation as a natural application of the Radon-Nikodym theorem. A unique feature is the discussion of the relation between moments and cumulants, leading to Isserlis' formula for moments of products of Gaussian variables and a proof of the central limit theorem avoiding the use of characteristic functions.
For clarity, the material is divided into 23 (mostly) short chapters. At the appearance of any new concept, adequate exercises are provided to strengthen it. Additional exercises are provided at the end of almost every chapter. A few results have been stated due to their importance, but their proofs do not belong to a first course. A reasonable familiarity with real analysis is needed, especially for the measure theory part. Having a background in basic probability would be helpful, but we do not assume a prior exposure to probability.
商品描述(中文翻譯)
這本書可以作為數學、統計學和機率論的高年級本科生及研究生的測度理論和測度理論機率的入門課程。從基礎開始,測度理論部分涵蓋了卡拉提奧多理論(Caratheodory's theorem)、勒貝格-斯蒂爾傑斯測度(Lebesgue-Stieltjes measures)、積分理論、法圖引理(Fatou's lemma)、主導收斂定理(dominated convergence theorem)、Lp 空間的基本概念、轉移測度和乘積測度、富比尼定理(Fubini's theorem)、在 Rd 中構造勒貝格測度、有限測度的收斂、簽名測度的喬丹-哈恩分解(Jordan-Hahn decomposition)、拉東-尼科迪姆定理(Radon-Nikodym theorem)以及微積分的基本定理。
機率部分涵蓋了標準主題,如博雷爾-坎特利引理(Borel-Cantelli lemmas)、獨立隨機變數之和的行為、0-1法則、機率分佈的弱收斂,特別是通過矩(moments)和累積量(cumulants),以及中心極限定理(central limit theorem)(通過特徵函數以及累積量),最後以條件期望作為拉東-尼科迪姆定理的自然應用。一個獨特的特點是討論矩和累積量之間的關係,導致伊瑟利斯公式(Isserlis' formula)用於高斯變數乘積的矩,並提供了一個避免使用特徵函數的中心極限定理的證明。
為了清晰起見,材料分為23個(大多數是)短章節。在任何新概念出現時,提供了足夠的練習題以加強理解。幾乎每個章節的末尾都提供了額外的練習題。由於某些結果的重要性,已經陳述了一些結果,但其證明不屬於入門課程。對實分析有合理的熟悉度是必要的,特別是對於測度理論部分。具備基本機率的背景會有所幫助,但我們不假設讀者之前接觸過機率。
作者簡介
Arup Bose is an Honorary Visiting Professor at the Indian Statistical Institute since his superannuation in 2024. He has published more than 150 research articles in probability, statistics, econometrics and economics., as well as six books (singly or with others) covering topics in random matrices, non-commutative probability, U-statistics, Mm estimates, resampling, and martingales. He is a Fellow of the Institute of Mathematical Statistics, the Indian National Science Academy, the National Academy of Science and the Indian Academy of Sciences. He has won the Shanti Swarup Bhatnagar Prize and the C.R. Rao award from the Governemtn of India, and the Mahalanobis International Award for Lifetime Achievements from the International Statistical Institute.
作者簡介(中文翻譯)
阿魯普·博斯自2024年退休以來,擔任印度統計學研究所的名譽訪問教授。他在概率、統計、計量經濟學和經濟學領域發表了超過150篇研究文章,以及六本書(單獨或與他人合著),涵蓋隨機矩陣、非交換概率、U統計量、Mm估計、重抽樣和馬丁蓋爾等主題。他是數學統計學會、印度國家科學院、國家科學院和印度科學院的院士。他曾獲得印度政府頒發的香提·斯瓦魯普·巴特納加獎和C.R. Rao獎,以及國際統計學會頒發的馬哈拉諾比斯終身成就國際獎。