AI and Big Data Sciences for Bioinformatics and Systems Med
暫譯: 生物資訊學與系統醫學的人工智慧與大數據科學

Liu Jiajia

相關主題

商品描述

This book aims to provide a comprehensive overview of how artificial intelligence (AI) and big data analytics are transforming bioinformatics and biomedical research. It covers a wide range of computational methods applied to biomedical big data, including genomics, transcriptomics, proteomics, and imaging data, with a focus on their role in precision medicine.The book is structured to guide readers from foundational AI models and data integration techniques to advanced applications in systems biology and drug discovery. It explores key topics such as single-cell and spatial omics analysis, genetic variation studies, and computational modeling of disease processes. Additionally, it highlights cutting-edge approaches in synthetic biology, mRNA optimization, and small molecule generation.Designed for researchers, bioinformaticians, and clinicians, this book bridges the gap between computational sciences and biomedical applications. It aims to equip readers with the necessary knowledge to develop AI-driven solutions for diagnosing diseases, predicting treatment responses, and designing novel therapeutics. By integrating theoretical insights with real-world applications, the book serves as both an educational resource and a reference for ongoing advancements in AI-driven biomedical research.

商品描述(中文翻譯)

本書旨在提供一個全面的概述,說明人工智慧(AI)和大數據分析如何改變生物資訊學和生物醫學研究。它涵蓋了應用於生物醫學大數據的各種計算方法,包括基因組學(genomics)、轉錄組學(transcriptomics)、蛋白質組學(proteomics)和影像數據,並著重於它們在精準醫療中的角色。本書的結構旨在引導讀者從基礎的 AI 模型和數據整合技術,進而深入到系統生物學和藥物發現的高級應用。它探討了單細胞和空間組學分析、基因變異研究以及疾病過程的計算建模等關鍵主題。此外,本書還突顯了合成生物學、mRNA 優化和小分子生成等前沿方法。本書專為研究人員、生物資訊學家和臨床醫生設計,旨在彌合計算科學與生物醫學應用之間的鴻溝。它的目標是使讀者具備開發 AI 驅動解決方案所需的知識,以便診斷疾病、預測治療反應和設計新型療法。通過將理論見解與實際應用相結合,本書既是教育資源,也是持續推進 AI 驅動生物醫學研究的參考資料。