Online Machine Learning: A Practical Guide with Examples in Python
暫譯: 線上機器學習:Python 實例實用指南
Bartz, Eva, Bartz-Beielstein, Thomas
- 出版商: Springer
- 出版日期: 2024-02-06
- 售價: $2,750
- 貴賓價: 9.5 折 $2,613
- 語言: 英文
- 頁數: 155
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 9819970067
- ISBN-13: 9789819970063
-
相關分類:
Python、程式語言、Machine Learning
海外代購書籍(需單獨結帳)
相關主題
商品描述
This book deals with the exciting, seminal topic of Online Machine Learning (OML). The content is divided into three parts: the first part looks in detail at the theoretical foundations of OML, comparing it to Batch Machine Learning (BML) and discussing what criteria should be developed for a meaningful comparison. The second part provides practical considerations, and the third part substantiates them with concrete practical applications.
The book is equally suitable as a reference manual for experts dealing with OML, as a textbook for beginners who want to deal with OML, and as a scientific publication for scientists dealing with OML since it reflects the latest state of research. But it can also serve as quasi OML consulting since decision-makers and practitioners can use the explanations to tailor OML to their needs and use it for their application and ask whether the benefits of OML might outweigh the costs.
OML will soon become practical; it is worthwhile to get involved with it now. This book already presents some tools that will facilitate the practice of OML in the future. A promising breakthrough is expected because practice shows that due to the large amounts of data that accumulate, the previous BML is no longer sufficient. OML is the solution to evaluate and process data streams in real-time and deliver results that are relevant for practice.
商品描述(中文翻譯)
這本書探討了在線機器學習(Online Machine Learning, OML)這一令人興奮且具有開創性的主題。內容分為三個部分:第一部分詳細探討OML的理論基礎,將其與批次機器學習(Batch Machine Learning, BML)進行比較,並討論應該制定哪些標準以進行有意義的比較。第二部分提供實際考量,第三部分則用具體的實踐應用來證實這些考量。
這本書同樣適合作為專家處理OML的參考手冊,作為希望學習OML的初學者的教科書,以及作為處理OML的科學家的科學出版物,因為它反映了最新的研究狀態。但它也可以作為準OML諮詢,因為決策者和實踐者可以利用這些解釋來根據他們的需求調整OML,並用於他們的應用,並詢問OML的好處是否可能超過其成本。
OML將很快變得實用;現在參與其中是值得的。這本書已經介紹了一些工具,將促進未來OML的實踐。由於大量數據的積累,實踐顯示以往的BML已經不再足夠,因此預期會有一個有前景的突破。OML是評估和處理數據流的解決方案,能夠實時提供對實踐相關的結果。
作者簡介
Eva Bartz is an expert in law and data protection. Within the wide area of data protection, she specializes particularly in the application of artificial intelligence and its benefits and dangers. Based on this vast experience, she founded Bartz & Bartz GmbH in 2014 together with Thomas Bartz-Beielstein and offers consulting for a variety of customers. She translates the academic expertise of Bartz & Bartz GmbH's advisors - who are leading experts in their fields - into a benefit for her customers. One of these customers was the Federal Statistical Office of Germany (Destatis), and the study for them laid the groundwork for this book.
作者簡介(中文翻譯)
托馬斯·巴茲-貝爾斯坦教授 (Prof. Dr. Thomas Bartz-Beielstein) 是一位擁有超過 30 年經驗的人工智慧專家。他是德國科隆應用科技大學 (TH Köln) 的應用數學教授,並擔任數據科學、工程與分析研究所 (Institute for Data Science, Engineering, and Analytics, IDE+A) 的主任。他的研究領域包括人工智慧、機器學習、模擬和優化。他開發了序列參數優化 (Sequential Parameter Optimization, SPO)。SPO 結合了基於代理模型的優化方法和進化計算。他曾在應用數學和統計學、實驗設計、基於模擬的優化以及水產業、電梯控制或機械工程等領域的應用等多個主題上工作。
伊娃·巴茲 (Eva Bartz) 是法律和數據保護方面的專家。在廣泛的數據保護領域中,她特別專注於人工智慧的應用及其優勢和風險。基於這些豐富的經驗,她於 2014 年與托馬斯·巴茲-貝爾斯坦共同創立了巴茲與巴茲有限公司 (Bartz & Bartz GmbH),並為各種客戶提供諮詢服務。她將巴茲與巴茲有限公司顧問的學術專業知識——這些顧問在各自領域中都是領先的專家——轉化為客戶的利益。其中一位客戶是德國聯邦統計局 (Destatis),為他們進行的研究為本書奠定了基礎。