不敗的數據學:從統計數字中看見真相的12堂思考訓練,不被造假及濫用的數字唬弄! Statistics Done Wrong: The Woefully Complete Guide

艾力克斯‧萊因哈特(Alex Reinhart) 著 畢馨云 譯

立即出貨 (庫存 < 5)

買這商品的人也買了...

相關活動主題

20180323 no starch press

商品描述

★★從謊言到武器,用統計的語言來思考,在複雜的資料中找出秩序與意義★★ 

1個數據,2種解答!如何聰明選擇數據?如何把數據藏起來? 
如何將數據屈打成招?怎麼知道某個成果是靠操弄數據得來的? 
如果知道有多少人的統計分析其實做錯了,你還會相信所謂專家學者的研究嗎? 

★令人瞠目結舌的統計手法實證案例,從科學發現、經濟生活到日常的數據學 
★做對分析、避免陷阱,讓你讀懂每一個數字,思考判斷不出錯 
★數據分析網站、著名統計學家強力推薦,從此改變你對統計的看法,決斷無懈可擊 

――――從本書中可以學到―――― 
●透視研究者竄改數據的手法,揭露捏造成果取信大眾的伎倆 
●如何看穿不可信的資訊,找出遺漏的細節,避免偏誤 
●問對問題,做對實驗設計,選對統計分析方法,然後堅持到底 
●如何思考p值、顯著性、非顯著性、信賴區間和迴歸 
●正確選擇樣本大小,避免偽陽性 
●報告你所做的分析,發表你的數據和原始碼 
●可依循的程序,可採取的防範措施,可用的分析軟體 

▌統計會犯錯!我們需要蒐集多少數據才能看清現實的真貌? 
優秀的研究帶來科學進展,而有好的統計分析才有優秀的研究。但統計分析要做得正確並不容易,就連最優秀、最聰明的人也不例外。如果你知道有多少科學家的分析其實做錯了,可能會嚇一跳。 
資料分析是科學的基礎,也是數據時代鋪天蓋地襲來的浪潮。統計學提供了威力強大的工具,能夠在最複雜的資料裡找出秩序與意義。但在這些以科學之名進行的研究分析和理論中,究竟潛藏了多少極不應該出錯的謬誤? 
數據解讀錯誤對現實世界的重大影響超乎想像。醫學臨床試驗主導了我們的醫療照護,確定強效新處方藥的安全性,犯罪學專家評估降低犯罪的不同方法,流行病學家設法減緩新疾病的傳播,市場行銷人員和業務經理努力找出最好的產品銷售方式——這一切歸結到底都是統計。但卻經常是做錯的統計。 

▌透視謬誤的原形,「統計」讓你不失敗! 
「謊言、他媽的謊言、統計數字」,很多已發表的研究結果屬於這三種謊言當中的一種。製藥產業似乎特別想要忽視那些證明自己的藥品沒有療效的已發表研究,來讓證據產生偏誤。遺漏的數據和刊登偏誤歪曲了我們對重要議題的見解。就連做得正確的統計分析也不可信任。藉由大量的技巧和分析方法,「將數據屈打成招」非常容易。如果沒有通靈能力,我們幾乎不可能知道某個「成果」是不是靠操弄數據得來的。 
本書列舉大量案例,揭露資料分析中的謬誤有多麼常見,並以清晰明瞭的推理來說明這些錯誤是怎麼產生的,又應該如何避免。書中將檢視令人尷尬的統計錯誤和疏漏,深入了解導致這些疏失產生的誤解和科學政治,最後開始改進做統計分析的方法和看穿數據真相的方式。 
任何需要做數據分析、不想被數字唬弄,以及所有想了解如何讓統計這項分析工具發揮最大效益的人,都應該讀讀本書! 

【對本書的讚譽】 

「珍貴的小書……很精采,門外漢也能讀懂。」 
──阿爾伯托.開羅(Alberto Cairo),邁阿密大學計算科學中心視覺化計畫主任 
「如果你分析帶有規則性的數據,但不確定分析得對不對,請來讀這本書。」 
──邱南森(Nathan Yau),數據流網站(FlowingData) 
「有趣又豐富的指南……清晰明瞭的彙整。」 
──約翰.沃斯(John A. Wass),《科學計算》期刊(Scientific Computing) 
「我絕對會向對醫學統計有興趣的人,以及不喜歡統計的醫學系學生或醫生推薦這本書!」 
──卡緹.邦斯博士(Dr. Catey Bunce),摩菲眼科醫院國民醫療服務基金信託(Moorfields Eye Hospital NHS Foundation Trust)首席統計學家 
「我非常喜歡這本書,也打算跟許多學生分享……精采極了。」 
──妮可.拉齊威爾博士(Dr. Nicole Radziwill),詹姆斯麥迪遜大學(James Madison University)整合科技系助理教授 
「我希望每位醫生都能讀一讀這本書。」 
──艾瑞克.拉莫特博士(Dr. Eric LaMotte),華盛頓大學內科住院醫師訓練計畫 
「很大膽的一本書,也很引人入勝……十分有趣,而且會從此改變你對統計的觀感。」 
──班.洛斯克(Ben Rothke),資訊安全專業人員 
「寫得很好又有趣的實用指南,書裡談的都是今天統計專業工作中最常遇到的問題。」 
──Civil Statistician部落格 
「凡是希望有機會了解研究結果的人,都應該把這本書當成寶貴的指南,這本書可幫助你正確理解。」 
──珊卓拉.亨利―史托克(Sandra Henry-Stocker),ITworld網站 
「任何一位數據科學家都該添購的重要藏書。除此之外,簡練的文字風格會抓住你的興趣,也會為你日後的計畫激發創意。強力推薦。」 
──insideBIGDATA網站 

作者簡介

艾力克斯‧萊因哈特Alex Reinhart 
美國卡內基美隆大學(Carnegie Mellon University)統計學講師和博士班學生。德州大學奧斯汀分校物理學士,研究如何利用統計學和物理學偵測放射性裝置的位置。 
 

目錄大綱

序 
致謝 

前言 

【第1章 漫談統計顯著性】 
▏p值的威力 
━有通靈能力的統計 
━奈曼╱皮爾森檢定 
▏對區間要信賴 

【第2章 統計檢定力與檢定力不足的統計】 
▏檢定力曲線 
▏檢定力不足的嚴重威脅 
━為什麼檢定力不足? 
━錯誤的紅燈右轉政策 
▏信賴區間與增強能力 
▏真實性膨脹 
━很小的極端 

【第3章 偽重複:聰明選擇數據】 
▏偽重複實例 
▏解釋偽重複 
▏批次式生物學 
▏同步偽重複 

【第4章 P值與基本率謬誤】 
▏基本率謬誤 
━小測驗 
━醫學檢驗中的基本率謬誤 
━如何用抽菸統計數字騙人? 
━拿起武器對抗基本率謬誤 
▏要是一開始沒成功,就一試再試 
▏腦造影中的混淆視聽資訊 
▏控制偽發現率 

【第5章 誤判顯著性】 
▏顯著性中的不顯著差異 
▏盯著顯著性看 

【第6章 雙重數據】 
▏循環論證式分析 
▏向平均數迴歸 
▏終止規則 

【第7章 連續性的錯誤處理】 
▏不必要的二分法 
▏統計檢定力不足 
▏討厭的混淆變量 

【第8章 濫用模型】 
▏從數據擬合出西瓜 
▏相關性與因果關係 
▏辛普森悖論 

【第9章 研究自由:美好的悸動?】 
▏一點點自由是件危險的事 
▏避免偏誤 

【第10章 人人都會犯錯】 
▏無法重現的遺傳學 
▏輕鬆做到重現性 
▏實驗、沖洗乾淨、重做一次 

【第11章 把數據藏起來】 
▏被扣押的數據 
━分享障礙 
━數據衰減 
▏就只是漏掉細節 
━我們知道自己不知道的那些數據 
━結果報告偏誤 
▏檔案櫃裡的科學 
━未發表的臨床試驗 
━看出報告偏誤 
━強制公開 

【第12章 我們能夠做的事】 
▏統計教育 
▏統計出版 
▏你的職責