TensorFlow 與 Keras - Python 深度學習應用實務
陳允傑
- 出版商: 旗標
- 出版日期: 2019-08-28
- 定價: $650
- 售價: 8.5 折 $553
- 語言: 繁體中文
- 頁數: 560
- ISBN: 9863126020
- ISBN-13: 9789863126027
-
相關分類:
DeepLearning、Python、程式語言、TensorFlow、Machine Learning
-
其他版本:
新一代 Keras 3.x 重磅回歸:跨 TensorFlow 與 PyTorch 建構 Transformer、CNN、RNN、LSTM 深度學習模型
買這商品的人也買了...
-
計算機組織與設計 : 硬體/軟體的介面, 5/e (Patterson: Computer Organization and Design: The Hardware/Software Interface, 5/e)$1,250$1,188 -
TensorFlow + Keras 深度學習人工智慧實務應用$590$460 -
演算法圖鑑:26種演算法 + 7種資料結構,人工智慧、數據分析、邏輯思考的原理和應用 step by step 全圖解$450$356 -
Python 資料科學與人工智慧應用實務$650$553 -
Python 網路爬蟲與資料視覺化應用實務$650$553 -
深度學習入門教室:6堂基礎課程 + Python 實作練習,Deep Learning、人工智慧、機器學習的理論和應用全圖解$550$495 -
Python 機器學習與深度學習特訓班:看得懂也會做的 AI人工智慧實戰 (附120分鐘影音教學/範例程式)$520$411 -
Deep learning 深度學習必讀 - Keras 大神帶你用 Python 實作 (Deep Learning with Python)$1,000$790 -
超圖解 Python 程式設計入門$650$553 -
$352深度學習的數學 -
Python 最強入門邁向頂尖高手之路 -- 王者歸來 (全彩版)$1,000$790 -
Pandas 資料分析實戰:使用 Python 進行高效能資料處理及分析 (Learning pandas : High-performance data manipulation and analysis in Python, 2/e)$580$493 -
輕鬆學會 Google TensorFlow 2.0 人工智慧深度學習實作開發$520$406 -
TensorFlow 自然語言處理|善用 Python 深度學習函式庫,教機器學會自然語言 (Natural Language Processing with TensorFlow)$620$527 -
Python 技術者們 - 練功!老手帶路教你精通正宗 Python 程式 (The Quick Python Book, 3/e)$780$663 -
Python 網路爬蟲:大數據擷取、清洗、儲存與分析 -- 王者歸來$650$514 -
深度學習 (Deep Learning)(繁體中文版)$1,200$1,020 -
動手做深度強化學習 (Deep Reinforcement Learning Hands-On)$690$538 -
深度學習|使用 Keras (Advanced Deep Learning with Keras: Applying GANs and other new deep learning algorithms to the real world)$560$442 -
機器學習的數學基礎 : AI、深度學習打底必讀$580$458 -
tf.keras 技術者們必讀!深度學習攻略手冊$1,000$850 -
深度學習的數學地圖 -- 用 Python 實作神經網路的數學模型 (附數學快查學習地圖)$580$458 -
Python 機器學習 (上), 3/e (Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow, 3/e)$620$484 -
Operating System Concepts, 10/e (GE-Paperback)$1,750$1,663 -
機器學習的統計基礎 : 深度學習背後的核心技術$680$537
相關主題
商品描述
數學忘光光,人工智慧原理看不懂?
→ 大量的【圖解說明】讓你秒懂運作原理
用相同資料集,訓練好的模型準確率比別人低很多?
→ 【舉一反三不死背】,教你用最適當的演算法調整模型
手上一堆資料,但要怎麼餵給神經網路?
→ 解說各種類型資料的【預處理手法】
本書秉持「先圖解、再實作,而後實務應用」的精神,帶你實際使用
Python 3 + TensorFlow + Keras,訓練自己的深度學習模型
深度學習是一種「實現機器學習的技術」,能夠利用如人類大腦功能般的「類神經網路」,處理如視覺、聽覺等感知問題,從學習中更新權重與偏向量進行學習,最後進行分類或預測。學會各種神經網路的類型後,教導讀者懂得調校神經網路和轉移學習目標,讓讀者能夠真正建構出屬於自己的神經網路模型。
書中的資料與範例中,將運用到:
■ MLP 多層感知器 - 進行糖尿病、鳶尾花的多元分類預測
■ MLP 多層感知器 - 進行房價的迴歸預測
■ CNN 卷積神經網路 - 進行彩色圖片的分類
■ LSTM 長短期記憶神經網路 - 進行股價預測
■ RNN 循環神經網路、LSTM、GRU 閘門循環單元神經網路 - 進行影評的情緒分析
還有手寫辨識預測、自編碼器 AE、主題分類等大量範例實作!
本書特色 :
◎ 人工智慧、機器學習、深度學習的基礎
◎ 從最基礎的神經網路建構
◎ 最具突破性的卷積神經網路實戰與應用
◎ 處理自然語言等具序列性資料的循環神經網路
◎ 建構並調整自己的神經網路模型
◎ 神經網路的模型視覺化、共享與輸出
目錄大綱
第一篇 人工智慧與深度學習的基礎
第 1 章 認識人工智慧與機器學習
第 2 章 建構 TensorFlow 與 Keras 開發環境
第 3 章 深度學習的基礎
第二篇 多層感知器:迴歸與分類問題
第 4 章 圖解神經網路–多層感知器 (MLP)
第 5 章 打造你的神經網路 - 多層感知器
第 6 章 多層感知器的實作案例
第三篇 卷積神經網路:電腦視覺
第 7 章 圖解卷積神經網路 (CNN)
第 8 章 打造你的卷積神經網路
第 9 章 卷積神經網路的實作案例
第四篇 循環神經網路:自然語言處理
第 10 章 圖解 RNN、LSTM 和 GRU 神經網路
第 11 章 打造你的循環神經網路
第 12 章 循環神經網路的實作案例
第五篇 建構出你自己的深度學習模型
第 13 章 資料預處理與資料增強
第 14 章 調校你的深度學習模型
第 15 章 預訓練模型與轉移學習
第 16 章 Functional API 與模型視覺化
附錄 A Python 程式語言與開發環境建立
附錄 B TensorFlow GPU 版本的安裝與使用










