文科生也看得懂的資料科學
Annalyn Ng & Kenneth Soo 沈佩誼
- 出版商: 碁峰資訊
- 出版日期: 2018-04-30
- 定價: $380
- 售價: 7.9 折 $300
- 語言: 繁體中文
- 頁數: 196
- ISBN: 9864767933
- ISBN-13: 9789864767939
-
相關分類:
資料科學
- 相關原文書: Numsense! Data Science for the Layman: No Math Added
立即出貨 (庫存 > 10)
買這商品的人也買了...
-
$390$332寫程式前就該懂的演算法 ─ 資料分析與程式設計人員必學的邏輯思考術 (Grokking Algorithms: An illustrated guide for programmers and other curious people)
-
$450$360認識資料科學的第一本書 (Data Analytics Made Accessible)
-
$796
深度學習 (Deep Learning)
-
$450$356演算法圖鑑:26種演算法 + 7種資料結構,人工智慧、數據分析、邏輯思考的原理和應用 step by step 全圖解
-
$500$390為你自己學 Git
-
$699$552Python 入門邁向高手之路王者歸來
-
$780$616Python 資料科學學習手冊 (Python Data Science Handbook: Essential Tools for Working with Data)
-
$650$507金融科技實戰:Python與量化投資
-
$380$304文科生也看得懂的電路學, 2/e
-
$590$502Python 資料運算與分析實戰:一次搞懂 NumPy, SciPy, Matplotlib, Pandas 最強套件
-
$360$306MIS 一定要懂的 82個網路技術知識
-
$540$459前端設計範式三大天王之 Vue.js
-
$380$342不敗的數據學:從統計數字中看見真相的 12堂思考訓練,不被造假及濫用的數字唬弄!
-
$380$300機器學習入門|從玻爾茲曼機械學習到深度學習
-
$450$360資安專家的 nmap 與 NSE 網路診斷與掃描技巧大公開
-
$540$432資料結構 -- 使用 C#
-
$500$390人人可作卡米狗:從零打造自己的 LINE 聊天機器人
-
$720$569Effective DevOps 中文版 (Effective DevOps: Building a Culture of Collaboration, Affinity, and Tooling at Scale)
-
$420$357WEB 設計職人必修 UX Design 初學者學習手冊
-
$680$578大數據時代一定要會的 SQL 商業資料分析術
-
$580$452無瑕的程式碼-整潔的軟體設計與架構篇 (Clean Architecture: A Craftsman's Guide to Software Structure and Design)
-
$380$342AIoT 人工智慧在物聯網的應用與商機
-
$500$390給工程師的第一本理財書:程式金融交易的 118個入門關鍵技巧
-
$210
人工智能基礎 (高中版)
-
$1,280$1,011CODE COMPLETE:軟體開發實務指南, 2/e (中文版) (Code Complete: A Practical Handbook of Software Construction, 2/e)
商品描述
* amazon.com 五顆星讀者無差評
* 史丹佛大學、劍橋大學相關課程指定教材
雖然資料科學越來越常被用來改善工作場域的種種決策,但對普羅大眾來說,這仍然是個神祕難懂的領域。本書避開艱深的數學與生澀的術語,以直觀的例子來說明各演算法功能與特色,例如,用預
測犯罪事件的例子來解釋隨機森林,用分群演算法來分析各類電影迷的人格特質等,本書所選用的例子能夠幫助讀者明確理解各演算法及實際應用,即使您不曾接觸過資料科學,也能藉由本書掌握基本概念。
本書特色:
.淺白的解釋,以及大量的圖解說明
.以實際的例子解說演算法的應用
.每章最後會有重點歸納加強學習效果
來自各界的讚譽
「以圖解的方式解說重要的資料科學相關演算法,對於剛接觸資料科學領域的新手、從事數據分析相關的商業人士而言,極有幫助。」- Dr. David Stillwell, 劍橋大學大數據課程講師
「以視覺化的方式解釋機器學習的概念,可以幫助不具備相關技術背景的學生了解這些抽象的概念。同時也能幫助剛接觸資料科學領域的學生掌握相關的基礎知識。」Ethan Chan,史丹佛大學大數據課程講師
「對資料科學與機器學習做了清楚的介紹,沒有拗口的術語,內容在廣度與深度也取得極佳的平衡。本書刻意避開數學推導,程式碼實作,在介紹不同機器學習方法的應用時也使用許多真實的問題。整體而言,本書對資料科學有相當生動的詮釋,我極力推薦。」- 陳俊杉, 台灣大學土木工程系教授
目錄大綱
Ch01|基本知識簡單說
1.1 準備資料
1.2 挑選演算法
1.3 調整參數
1.4 評估結果
1.5 本章小結
Ch02|k-平均分群演算法
2.1 尋找消費者群集
2.2 舉例:電影迷的性格特徵
2.3 定義群集
2.4 先天限制
2.5 本章小結
Ch03|主成份分析
3.1 探索食物的營養成分
3.2 主成份
3.3 舉例:分析食物族群
3.4 先天限制
3.5 本章小節
Ch04|關聯規則
4.1 找出消費模式
4.2 支持度、可信度與作用度
4.3 舉例:食品雜貨交易
4.4 先驗原則
4.5 先天限制
4.6 本章小結
Ch05|社群網路分析
5.1 將關係地圖化
5.2 舉例:武器交易的地緣政治性
5.3 Louvain 演算法
5.4 PageRank 演算法
Ch06|迴歸分析
6.1 推導一條趨勢線
6.2 舉例:預測房價
6.3 梯度下降
6.4 迴歸係數
6.5 相關係數
6.6 先天限制
6.7 本章小結
Ch07|k-最近鄰演算法與異常檢測
7.1 食物取證
7.2 物以類聚
7.3 舉例:蒸餾出紅酒的不同成份
7.4 異常檢測
7.5 先天限制
7.6 本章小結
Ch08|支持向量機
8.1 「不」或「噢不」?
8.2 舉例:預測心臟疾病
8.3 畫出最佳分界線
8.4 先天限制
8.5 本章小結
Ch09|決策樹
9.1 預測災難中的存活機率
9.2 舉例:逃出鐵達尼號
9.3 產生一棵決策樹
9.4 先天限制
9.5 本章小結
Ch10|隨機森林
10.1 群眾的智慧
10.2 舉例:預測犯罪
10.3 總體
10.4 引導聚集算法
10.5 先天限制
10.6 本章小結
Ch11|類神經網路
11.1 建立一顆大腦
11.2 舉例:辨識手寫數字
11.3 類神經網路的組成
11.4 活化法則
11.5 先天限制
11.6 本章小結
Ch12|A/B測試與多拉桿吃角子老虎機
12.1 A/B測試的基本概念
12.2 A/B測試的限制
12.3 Epsilon-Decreasing策略
12.4 舉例:多拉桿吃角子老虎機
12.5 有趣事實:跟緊贏家就對了?
12.6 Epsilon-Decreasing 策略的限制
12.7 本章小結