Elasticsearch 9: BBQ Vector Search and AI-Powered Semantic Retrieval: Build Production Systems with Better Binary Quantization, Esql Joins, and Hybrid
暫譯: Elasticsearch 9:BBQ 向量搜尋與 AI 驅動的語意檢索:構建更佳二進位量化、Esql 連接與混合的生產系統

Sullivan, Eero

  • 出版商: Independently Published
  • 出版日期: 2025-12-18
  • 售價: $1,460
  • 貴賓價: 9.8$1,431
  • 語言: 英文
  • 頁數: 386
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 9798261990079
  • ISBN-13: 9798261990079
  • 相關分類: Web-crawler 網路爬蟲
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Design Elasticsearch 9 vector search and RAG systems that stay fast, accurate, and predictable in production.

Elasticsearch 9 changes how vector search, quantization, and hybrid retrieval behave under real load, yet many teams still ship clusters that fall over when traffic or data grows. Guesswork around HNSW settings, BBQ, DiskBBQ, and filtered ANN often leads to fragile systems and painful outages.

This book walks you through the full lifecycle of Elasticsearch 9 search workloads, from upgrade planning and data modeling to dense vectors, BBQ and DiskBBQ, ESQL workflows, and production playbooks, so you can reason about behavior instead of tuning by accident.

  • Understand Elasticsearch 9 search architecture, shards, segments, and upgrade paths for vector heavy clusters
  • Model documents and chunks for hybrid retrieval and RAG with clean metadata for filters multi tenant access and citations
  • Choose and tune dense_vector mappings similarity functions and HNSW parameters for balanced recall and latency
  • Apply Better Binary Quantization and DiskBBQ to cut memory and storage while keeping quality with oversampling and rescoring
  • Design filtered vector search that actually works using ACORN concepts and patterns for ACL and time sliced data
  • Build maintainable hybrid search that combines lexical search vectors RRF fusion and rerankers without unreadable queries
  • Use retrievers as the primary query interface and wire them into ESQL FORK and FUSE pipelines
  • Map and query semantic_text fields and roll out semantic retrieval safely across models and indices
  • Integrate inference endpoints for embeddings and reranking with clear security observability and fallback paths
  • Adopt ESQL LOOKUP JOIN for in cluster enrichment and cleaner joins between chunk and source indices
  • Run relevance experiments, Rally style benchmarks, and capacity planning focused on recall latency and cost per query
  • Follow concrete production playbooks and reference implementations for hybrid retrieval, RAG services, and ESQL based search stacks

You also get practical add ons, including deployment checklists, reference pipelines using retrievers, rerankers, and ESQL LOOKUP JOIN, plus a benchmark harness with Rally style tests and a capacity sizing worksheet that you can adapt to your own environment.

Throughout the chapters you work through realistic JSON mappings, curl examples, Docker and configuration snippets, and ESQL queries that you can lift into your own clusters with minimal adjustment.

Grab your copy today and build Elasticsearch 9 search systems you can trust in production.

商品描述(中文翻譯)

**設計 Elasticsearch 9 向量搜尋和 RAG 系統,使其在生產環境中保持快速、準確和可預測。**

Elasticsearch 9 改變了向量搜尋、量化和混合檢索在實際負載下的行為,但許多團隊仍然部署在流量或數據增長時會崩潰的叢集。對 HNSW 設定、BBQ、DiskBBQ 和過濾 ANN 的猜測往往導致脆弱的系統和痛苦的停機。

本書將引導您了解 Elasticsearch 9 搜尋工作負載的完整生命周期,從升級規劃和數據建模到密集向量、BBQ 和 DiskBBQ、ESQL 工作流程以及生產手冊,讓您能夠理性思考行為,而不是隨意調整。

- 了解 Elasticsearch 9 搜尋架構、分片、段和針對重向量叢集的升級路徑
- 為混合檢索和 RAG 建模文檔和區塊,並提供乾淨的元數據以便於過濾、多租戶訪問和引用
- 選擇和調整 dense_vector 映射的相似性函數和 HNSW 參數,以平衡召回率和延遲
- 應用更好的二進位量化和 DiskBBQ 來減少內存和存儲,同時保持質量,並進行過採樣和重新評分
- 設計實際可用的過濾向量搜尋,使用 ACORN 概念和模式來處理 ACL 和時間切片數據
- 構建可維護的混合搜尋,結合詞彙搜尋、向量、RRF 融合和重新排名器,而不產生難以閱讀的查詢
- 將檢索器作為主要查詢介面,並將其連接到 ESQL FORK 和 FUSE 管道
- 映射和查詢 semantic_text 欄位,並安全地在模型和索引之間推出語義檢索
- 整合嵌入和重新排名的推理端點,並提供清晰的安全性、可觀察性和回退路徑
- 採用 ESQL LOOKUP JOIN 進行叢集內的豐富和更乾淨的區塊與來源索引之間的聯接
- 進行相關性實驗、Rally 風格基準測試,以及專注於召回延遲和每次查詢成本的容量規劃
- 遵循具體的生產手冊和參考實現,以支持混合檢索、RAG 服務和基於 ESQL 的搜尋堆疊

您還將獲得實用的附加內容,包括部署檢查清單、使用檢索器、重新排名器和 ESQL LOOKUP JOIN 的參考管道,以及一個基準測試工具,配有 Rally 風格的測試和容量規劃工作表,您可以根據自己的環境進行調整。

在各章中,您將處理現實的 JSON 映射、curl 範例、Docker 和配置片段,以及可以輕鬆應用到您自己的叢集中的 ESQL 查詢,幾乎不需要調整。

**今天就獲得您的副本,構建您可以信賴的 Elasticsearch 9 搜尋系統。**

最後瀏覽商品 (1)