Mastering Number Theory: Quadratic Residues and Reciprocity Laws: Mastering Quadratic Residues, Reciprocity Laws & Python Demos for Number Theory and
暫譯: 精通數論:二次剩餘與互反律:精通二次剩餘、互反律及數論的 Python 示範

Nowakowski, Alexei

  • 出版商: Independently Published
  • 出版日期: 2025-05-01
  • 售價: $1,220
  • 貴賓價: 9.5$1,159
  • 語言: 英文
  • 頁數: 280
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 9798282088625
  • ISBN-13: 9798282088625
  • 相關分類: Amazon Web ServicesPython程式語言
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

"I once proved that coffee grounds are just quadratic residues, because they always come back in your cup."

Brace yourself for the most exhilarating journey through modular squares, Legendre symbols, reciprocity laws and Gauss sums, peppered with full Python demos that actually run. If you thought number theory was dusty, prepare for an eccentric guide who unearths every secret from Euler's Criterion to character sums, all while ensuring your code compiles on the first try.


Why This Textbook Is Unapologetically Essential
  • Deep Dive into Core Concepts: Quadratic residues, non-residues, Legendre & Jacobi symbols, Hensel lifts, Gauss sums, binary quadratic forms, and the surprising ways they interlock.
  • Python-First Approach: Every theorem comes with executable demos. Visualize primitive roots, test reciprocity laws, compute character sums, no dry proofs without runnable code.
  • Cryptographic Edge: Learn how these residue theorems underpin RSA residuosity, Goldwasser-Micali encryption, zero-knowledge proofs, and pseudorandom generators.


What You'll Discover (in Glorious Detail)
  • Chapters 1-4: Modular squares, Euler's Criterion, distribution of residues, primitive roots
  • Chapters 5-9: Gauss's Lemma, three distinct proofs of Quadratic Reciprocity, including Eisenstein's lattice method
  • Chapters 10-13: Composite moduli, Jacobi symbol, Hensel's lemma and p-adic squares
  • Chapters 14-17: Gauss sums, quadratic forms, sum-of-two-squares theorem, Solovay-Strassen primality tests
  • Chapters 18-24: Reziduosity in cryptosystems, finite field characters, analytic bounds, character sums, and a unified reciprocity panorama


Who Should Read This
  • Aspiring number-theorists craving computational clarity
  • Cryptography engineers seeking mathematical rigor
  • Graduate students needing a polished reference with code you can fork
  • Pythonistas hungry for pure-math challenges

商品描述(中文翻譯)

「我曾經證明過咖啡渣只是二次剩餘,因為它們總是會回到你的杯子裡。」

準備好迎接一場刺激的旅程,深入模組平方、勒讓德符號、互惠法則和高斯和,並附上實際運行的完整 Python 示範。如果你認為數論是陳舊的,那麼請準備好迎接一位古怪的指南,他將揭示從歐拉準則到字符和的每一個秘密,同時確保你的程式碼能夠一次編譯成功。

為什麼這本教科書是不可或缺的

- **深入核心概念**:二次剩餘、非剩餘、勒讓德符號與雅可比符號、亨塞爾提升、高斯和、二元二次型,以及它們意想不到的交織方式。
- **以 Python 為先的方式**:每個定理都附有可執行的示範。可視化原始根,測試互惠法則,計算字符和,沒有乾燥的證明,只有可運行的程式碼。
- **加密優勢**:了解這些剩餘定理如何支撐 RSA 剩餘性、Goldwasser-Micali 加密、零知識證明和偽隨機生成器。

你將發現的內容(詳盡無遺)

- **第 1-4 章**:模組平方、歐拉準則、剩餘的分佈、原始根
- **第 5-9 章**:高斯引理、三種不同的二次互惠證明,包括艾森斯坦的格方法
- **第 10-13 章**:合成模數、雅可比符號、亨塞爾引理和 p-進平方
- **第 14-17 章**:高斯和、二次型、兩平方和定理、Solovay-Strassen 質數測試
- **第 18-24 章**:加密系統中的剩餘性、有限域字符、解析界限、字符和,以及統一的互惠全景

誰應該閱讀這本書

- 渴望計算清晰的數論學者
- 尋求數學嚴謹的加密工程師
- 需要精緻參考資料的研究生,並且可以分支的程式碼
- 渴望純數學挑戰的 Python 愛好者

最後瀏覽商品 (20)