Mastering Production with Langflow, LangChain, OpenAI, and Vector Databases: Deploy AI apps with Langflow's API, MCP servers, LangChain flows, OpenAI
暫譯: 精通 Langflow、LangChain、OpenAI 與向量資料庫的生產:使用 Langflow 的 API、MCP 伺服器、LangChain 流程與 OpenAI 部署 AI 應用程式
Rowe, Cal
- 出版商: Independently Published
- 出版日期: 2025-07-14
- 售價: $1,070
- 貴賓價: 9.5 折 $1,017
- 語言: 英文
- 頁數: 448
- 裝訂: Quality Paper - also called trade paper
- ISBN: 9798292464815
- ISBN-13: 9798292464815
-
相關分類:
LangChain
海外代購書籍(需單獨結帳)
相關主題
商品描述
Turn your prototypes into production-grade AI applications-built for scale, security, and success.
Whether you're an AI engineer, software developer, or technical product lead, Mastering Production with Langflow, LangChain, OpenAI, and Vector Databases is your hands-on guide to deploying intelligent agents and Retrieval-Augmented Generation (RAG) systems in real-world environments. This advanced third volume builds on the foundations of visual development in Langflow and the modular power of LangChain to help you launch, scale, and maintain enterprise-ready AI workflows across cloud platforms.
You'll learn how to deploy robust agents using Langflow's API and Multi-Cloud Platform (MCP) servers, integrate with LangChain flows and OpenAI models, and manage vector databases like Pinecone and Weaviate-all while containerizing and orchestrating your applications using Docker and Kubernetes.
Inside You'll Learn How To:
Deploy AI agents as APIs using Langflow's MCP servers
Orchestrate complex LangChain workflows for production
Integrate OpenAI models securely and optimize usage costs
Scale vector databases for high-throughput RAG
Containerize workflows using Docker and deploy via AWS, Azure, and GCP
Implement monitoring, logging, and real-time observability with LangSmith and Prometheus
Meet enterprise-grade security and compliance standards like GDPR and CCPA
What's New in This Book:
Langflow's production API and multi-node MCP server setup
Advanced deployment strategies with CI/CD, Kubernetes, and Docker
Case studies deploying financial analysis and content generation agents at scale
Hands-on code: FastAPI, LangChain, Dockerfiles, Kubernetes configs, and more
Deep dives into hybrid RAG search, token usage optimization, and security architecture
Perfect For:
Developers and engineers scaling AI systems into production
AI/ML professionals building RAG agents with vector search
Technical product managers overseeing AI delivery pipelines
Educators and researchers teaching deployment-ready workflows
Contributors to Langflow's growing open-source community
Includes Bonus Content:
Downloadable Langflow JSON flows and container-ready code samples
Visual architecture diagrams for real-world deployment scenarios
CI/CD configs, security checklists, and Docker Compose templates
Exclusive links to Langflow's GitHub projects and Discord community
You've built intelligent agents. Now it's time to launch them.
With Mastering Production with Langflow, you'll gain the production-readiness, confidence, and expertise to deliver AI systems that scale, comply, and thrive in the real world.
商品描述(中文翻譯)
**將您的原型轉變為生產級的 AI 應用程式,為擴展、安全性和成功而建。**
無論您是 AI 工程師、軟體開發人員還是技術產品負責人,*Mastering Production with Langflow, LangChain, OpenAI, and Vector Databases* 是您在現實環境中部署智能代理和檢索增強生成(RAG)系統的實用指南。本書的第三卷進一步建立在 Langflow 的視覺開發基礎和 LangChain 的模組化能力上,幫助您在雲平台上啟動、擴展和維護企業級的 AI 工作流程。
您將學習如何使用 Langflow 的 API 和多雲平台(MCP)伺服器部署穩健的代理,與 LangChain 流程和 OpenAI 模型整合,並管理像 Pinecone 和 Weaviate 的向量資料庫,同時使用 Docker 和 Kubernetes 將您的應用程式容器化和編排。
**在本書中您將學習如何:**
- 使用 Langflow 的 MCP 伺服器將 AI 代理部署為 API
- 編排複雜的 LangChain 工作流程以進行生產
- 安全地整合 OpenAI 模型並優化使用成本
- 擴展向量資料庫以支持高吞吐量的 RAG
- 使用 Docker 容器化工作流程,並通過 AWS、Azure 和 GCP 部署
- 使用 LangSmith 和 Prometheus 實施監控、日誌記錄和實時可觀察性
- 符合企業級的安全性和合規標準,如 GDPR 和 CCPA
**本書的新內容:**
- Langflow 的生產 API 和多節點 MCP 伺服器設置
- 使用 CI/CD、Kubernetes 和 Docker 的高級部署策略
- 大規模部署金融分析和內容生成代理的案例研究
- 實作代碼:FastAPI、LangChain、Dockerfiles、Kubernetes 配置等
- 深入探討混合 RAG 搜索、令牌使用優化和安全架構
**適合對象:**
- 將 AI 系統擴展到生產的開發人員和工程師
- 建立 RAG 代理和向量搜索的 AI/ML 專業人員
- 監督 AI 交付管道的技術產品經理
- 教授可部署工作流程的教育工作者和研究人員
- Langflow 不斷增長的開源社群的貢獻者
**包括額外內容:**
- 可下載的 Langflow JSON 流程和容器準備的代碼範例
- 實際部署場景的視覺架構圖
- CI/CD 配置、安全檢查清單和 Docker Compose 模板
- Langflow 的 GitHub 專案和 Discord 社群的獨家連結
您已經建立了智能代理。現在是時候將它們推出市場了。
透過 *Mastering Production with Langflow*,您將獲得生產就緒性、自信和專業知識,以交付可擴展、合規並在現實世界中蓬勃發展的 AI 系統。