Mastering Production with Langflow, LangChain, OpenAI, and Vector Databases: Deploy AI apps with Langflow's API, MCP servers, LangChain flows, OpenAI
暫譯: 精通 Langflow、LangChain、OpenAI 與向量資料庫的生產:使用 Langflow 的 API、MCP 伺服器、LangChain 流程與 OpenAI 部署 AI 應用程式

Rowe, Cal

  • 出版商: Independently Published
  • 出版日期: 2025-07-14
  • 售價: $1,070
  • 貴賓價: 9.5$1,017
  • 語言: 英文
  • 頁數: 448
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 9798292464815
  • ISBN-13: 9798292464815
  • 相關分類: LangChain
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Turn your prototypes into production-grade AI applications-built for scale, security, and success.

Whether you're an AI engineer, software developer, or technical product lead, Mastering Production with Langflow, LangChain, OpenAI, and Vector Databases is your hands-on guide to deploying intelligent agents and Retrieval-Augmented Generation (RAG) systems in real-world environments. This advanced third volume builds on the foundations of visual development in Langflow and the modular power of LangChain to help you launch, scale, and maintain enterprise-ready AI workflows across cloud platforms.

You'll learn how to deploy robust agents using Langflow's API and Multi-Cloud Platform (MCP) servers, integrate with LangChain flows and OpenAI models, and manage vector databases like Pinecone and Weaviate-all while containerizing and orchestrating your applications using Docker and Kubernetes.

Inside You'll Learn How To:

  • Deploy AI agents as APIs using Langflow's MCP servers

  • Orchestrate complex LangChain workflows for production

  • Integrate OpenAI models securely and optimize usage costs

  • Scale vector databases for high-throughput RAG

  • Containerize workflows using Docker and deploy via AWS, Azure, and GCP

  • Implement monitoring, logging, and real-time observability with LangSmith and Prometheus

  • Meet enterprise-grade security and compliance standards like GDPR and CCPA

What's New in This Book:

  • Langflow's production API and multi-node MCP server setup

  • Advanced deployment strategies with CI/CD, Kubernetes, and Docker

  • Case studies deploying financial analysis and content generation agents at scale

  • Hands-on code: FastAPI, LangChain, Dockerfiles, Kubernetes configs, and more

  • Deep dives into hybrid RAG search, token usage optimization, and security architecture

Perfect For:

  • Developers and engineers scaling AI systems into production

  • AI/ML professionals building RAG agents with vector search

  • Technical product managers overseeing AI delivery pipelines

  • Educators and researchers teaching deployment-ready workflows

  • Contributors to Langflow's growing open-source community

Includes Bonus Content:

  • Downloadable Langflow JSON flows and container-ready code samples

  • Visual architecture diagrams for real-world deployment scenarios

  • CI/CD configs, security checklists, and Docker Compose templates

  • Exclusive links to Langflow's GitHub projects and Discord community

You've built intelligent agents. Now it's time to launch them.
With Mastering Production with Langflow, you'll gain the production-readiness, confidence, and expertise to deliver AI systems that scale, comply, and thrive in the real world.

商品描述(中文翻譯)

**將您的原型轉變為生產級的 AI 應用程式,為擴展、安全性和成功而建。**

無論您是 AI 工程師、軟體開發人員還是技術產品負責人,*Mastering Production with Langflow, LangChain, OpenAI, and Vector Databases* 是您在現實環境中部署智能代理和檢索增強生成(RAG)系統的實用指南。本書的第三卷進一步建立在 Langflow 的視覺開發基礎和 LangChain 的模組化能力上,幫助您在雲平台上啟動、擴展和維護企業級的 AI 工作流程。

您將學習如何使用 Langflow 的 API 和多雲平台(MCP)伺服器部署穩健的代理,與 LangChain 流程和 OpenAI 模型整合,並管理像 Pinecone 和 Weaviate 的向量資料庫,同時使用 Docker 和 Kubernetes 將您的應用程式容器化和編排。

**在本書中您將學習如何:**
- 使用 Langflow 的 MCP 伺服器將 AI 代理部署為 API
- 編排複雜的 LangChain 工作流程以進行生產
- 安全地整合 OpenAI 模型並優化使用成本
- 擴展向量資料庫以支持高吞吐量的 RAG
- 使用 Docker 容器化工作流程,並通過 AWS、Azure 和 GCP 部署
- 使用 LangSmith 和 Prometheus 實施監控、日誌記錄和實時可觀察性
- 符合企業級的安全性和合規標準,如 GDPR 和 CCPA

**本書的新內容:**
- Langflow 的生產 API 和多節點 MCP 伺服器設置
- 使用 CI/CD、Kubernetes 和 Docker 的高級部署策略
- 大規模部署金融分析和內容生成代理的案例研究
- 實作代碼:FastAPI、LangChain、Dockerfiles、Kubernetes 配置等
- 深入探討混合 RAG 搜索、令牌使用優化和安全架構

**適合對象:**
- 將 AI 系統擴展到生產的開發人員和工程師
- 建立 RAG 代理和向量搜索的 AI/ML 專業人員
- 監督 AI 交付管道的技術產品經理
- 教授可部署工作流程的教育工作者和研究人員
- Langflow 不斷增長的開源社群的貢獻者

**包括額外內容:**
- 可下載的 Langflow JSON 流程和容器準備的代碼範例
- 實際部署場景的視覺架構圖
- CI/CD 配置、安全檢查清單和 Docker Compose 模板
- Langflow 的 GitHub 專案和 Discord 社群的獨家連結

您已經建立了智能代理。現在是時候將它們推出市場了。
透過 *Mastering Production with Langflow*,您將獲得生產就緒性、自信和專業知識,以交付可擴展、合規並在現實世界中蓬勃發展的 AI 系統。