Optimizing LLM Performance: Framework-Agnostic Techniques for Speed, Scalability, and Cost-Efficient Inference Across PyTorch, ONNX, vLLM, and More
暫譯: 優化LLM性能:跨越PyTorch、ONNX、vLLM等的框架無關技術以提升速度、可擴展性和成本效益推理

Poisson, Peter E.

  • 出版商: Independently Published
  • 出版日期: 2025-07-26
  • 售價: $910
  • 貴賓價: 9.5$865
  • 語言: 英文
  • 頁數: 164
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 9798294338459
  • ISBN-13: 9798294338459
  • 相關分類: Large language model
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Are you struggling to scale your large language models (LLMs) without breaking the bank or sacrificing latency? This book offers a clear roadmap to optimize inference, reduce costs, and scale seamlessly across platforms like PyTorch, ONNX, vLLM, and more.

Optimizing LLM Performance is your hands-on guide to boosting the efficiency of large language models in production environments. Whether you're building chatbots, document summarizers, or enterprise AI tools, this book teaches proven methods to accelerate inference while maintaining accuracy. It dives deep into hardware-aware optimizations, quantization, model pruning, compiler acceleration, and memory-efficient runtime strategies without locking you into any single framework.

Written with clarity and real-world use in mind, the book features practical case studies, side-by-side performance comparisons, and up-to-date techniques from the cutting edge of AI deployment. If you're building, serving, or scaling LLMs in 2025, this is the performance engineering guide you've been waiting for.

Key Features:
- Framework-agnostic optimization techniques using PyTorch, ONNX Runtime, vLLM, llama.cpp, and more
- Deep dive into quantization (INT8/4-bit), distillation, pruning, and KV caching
- Hands-on examples with FastAPI, Hugging Face Transformers, and serverless deployment
- Covers performance profiling, streaming, batching, and cost-efficient scaling
- Future-proof insights on compiler-aware models, LoRA 2.0, and edge inference

Ready to build LLM systems that are faster, cheaper, and more scalable?
Grab your copy of Optimizing LLM Performance today and deploy smarter.

商品描述(中文翻譯)

您是否在擴展大型語言模型(LLMs)時遇到困難,卻又不想花費過多或犧牲延遲?本書提供了一個清晰的路線圖,以優化推理、降低成本,並在 PyTorch、ONNX、vLLM 等平台上無縫擴展。

優化 LLM 性能》是您在生產環境中提升大型語言模型效率的實用指南。無論您是在構建聊天機器人、文件摘要工具,還是企業 AI 工具,本書教您經過驗證的方法,以加速推理同時保持準確性。它深入探討了硬體感知優化、量化、模型修剪、編譯器加速和內存高效運行時策略,而不會將您鎖定在任何單一框架中。

本書以清晰和實際應用為出發點,包含實用的案例研究、並排性能比較,以及來自 AI 部署前沿的最新技術。如果您在 2025 年構建、提供或擴展 LLM,本書就是您一直在等待的性能工程指南。

主要特點:
- 使用 PyTorch、ONNX Runtime、vLLM、llama.cpp 等的框架無關優化技術
- 深入探討量化(INT8/4-bit)、蒸餾、修剪和 KV 緩存
- 與 FastAPI、Hugging Face Transformers 和無伺服器部署的實用範例
- 涵蓋性能分析、串流、批處理和成本效益擴展
- 關於編譯器感知模型、LoRA 2.0 和邊緣推理的未來洞察

準備好構建更快、更便宜且更具可擴展性的 LLM 系統了嗎?
今天就來獲取您的《優化 LLM 性能》副本,並更智能地進行部署。