Differentiable Programming for AI Engineers: Practical Workflows with PyTorch, JAX, and Julia
暫譯: 可微分程式設計:AI 工程師的實用工作流程與 PyTorch、JAX 和 Julia
Vale, Ethan
- 出版商: Independently Published
- 出版日期: 2025-08-18
- 售價: $970
- 貴賓價: 9.5 折 $922
- 語言: 英文
- 頁數: 238
- 裝訂: Quality Paper - also called trade paper
- ISBN: 9798298736251
- ISBN-13: 9798298736251
-
相關分類:
AI Coding
海外代購書籍(需單獨結帳)
相關主題
商品描述
Differentiable programming is rapidly becoming a cornerstone of modern artificial intelligence, extending the power of gradient-based optimization far beyond neural networks into domains as diverse as physics, control systems, graphics, and large-scale simulation. While research papers and scattered tutorials have introduced fragments of the field, Differentiable Programming for AI Engineers is the first and only comprehensive guide designed to help practitioners and advanced students grasp its principles and apply them effectively using today's leading frameworks.
This book unifies the concepts, tools, and methods of differentiable programming in a clear and practical fashion, balancing mathematical rigor with hands-on engineering workflows. Through carefully chosen explanations and code examples in PyTorch, JAX, and Julia, the book demonstrates how to move from theory to implementation without losing sight of precision or usability.
The book covers the foundations of automatic differentiation, differentiable optimization, and end-to-end trainable systems, while extending to cutting-edge applications such as differentiable physics engines, differentiable graphics and rendering, and optimization in complex industrial systems. Alongside these, it introduces advanced practices for workflow design, hybrid modeling, and the integration of differentiable components into real-world AI pipelines.
With an emphasis on clarity and practical value, this book shows how to construct, analyze, and deploy differentiable programs that can optimize themselves in dynamic environments. Each chapter pairs essential mathematical ideas with runnable code, making the material directly applicable for engineers and researchers alike.
Based on years of experience building AI applications, this volume will help readers understand the principles of differentiable programming, evaluate its role in modern AI systems, and design workflows that extend learning into new domains. It is essential reading for machine learning engineers, applied researchers, and anyone aiming to master the next generation of optimization-driven AI.
商品描述(中文翻譯)
可微編程(Differentiable programming)正迅速成為現代人工智慧的基石,將基於梯度的優化能力擴展到神經網絡以外的領域,如物理學、控制系統、圖形學和大規模模擬。雖然研究論文和零散的教程已經介紹了該領域的一些片段,但《可微編程:AI 工程師的指南》(Differentiable Programming for AI Engineers)是第一本也是唯一一本全面的指南,旨在幫助從業者和高級學生掌握其原則並有效地應用於當今領先的框架。
本書以清晰且實用的方式統一了可微編程的概念、工具和方法,平衡了數學的嚴謹性與實際的工程工作流程。通過精心選擇的解釋和在 PyTorch、JAX 和 Julia 中的代碼示例,本書展示了如何從理論轉向實現,而不失去精確性或可用性。
本書涵蓋了自動微分、可微優化和端到端可訓練系統的基礎,同時擴展到前沿應用,如可微物理引擎、可微圖形和渲染,以及在複雜工業系統中的優化。與此同時,它還介紹了工作流程設計、混合建模和將可微組件整合到現實世界 AI 管道中的先進實踐。
本書強調清晰性和實用價值,展示了如何構建、分析和部署可微程序,這些程序能夠在動態環境中自我優化。每一章都將基本的數學概念與可執行的代碼配對,使材料對工程師和研究人員都能直接應用。
基於多年構建 AI 應用的經驗,本書將幫助讀者理解可微編程的原則,評估其在現代 AI 系統中的角色,並設計將學習擴展到新領域的工作流程。這是機器學習工程師、應用研究人員以及任何希望掌握下一代以優化為驅動的 AI 的人必讀的書籍。