Algorithmic Edge: Machine Learning in Financial Markets
暫譯: 算法優勢:金融市場中的機器學習

Van Der Post, Hayden, Publishing, Reactive, Schwartz, Alice

  • 出版商: Independently Published
  • 出版日期: 2025-02-26
  • 售價: $970
  • 貴賓價: 9.8$950
  • 語言: 英文
  • 頁數: 428
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 9798312240627
  • ISBN-13: 9798312240627
  • 相關分類: Machine LearningFintechPython
  • 海外代購書籍(需單獨結帳)

商品描述

Reactive Publishing

Gain a competitive advantage in the financial markets with The Algorithmic Edge: Machine Learning in Financial Markets. This comprehensive guide takes you through the world of algorithmic trading, showcasing how machine learning can be used to design, optimize, and execute trading strategies that can outperform traditional approaches. Packed with practical Python examples and real-world case studies, this book teaches you how to harness the power of AI to transform your trading, portfolio management, and risk assessment strategies.

Key Features:

  • Introduction to Algorithmic Trading: Understand the fundamentals of algorithmic trading, the impact of financial data on markets, and how to leverage machine learning algorithms for developing advanced trading strategies.
  • Machine Learning Techniques: Learn about supervised and unsupervised learning, reinforcement learning, and deep learning, with a focus on their applications in trading and risk management.
  • Python for Financial Markets: Discover how to build and implement machine learning models in Python, including libraries such as scikit-learn, TensorFlow, and Keras to automate and optimize trading strategies.
  • Practical Case Studies: Work through real-world trading examples, backtest strategies, and explore the complexities of market prediction and financial forecasting.
  • Advanced Topics: Explore advanced topics such as time-series analysis, sentiment analysis, feature engineering, and portfolio optimization using machine learning models.

What You'll Learn:

  • Developing Trading Algorithms: Learn how to design and backtest profitable trading strategies using machine learning.
  • Using Supervised & Unsupervised Learning: Apply machine learning techniques like regression, classification, clustering, and reinforcement learning to build better trading algorithms.
  • Sentiment & Time-Series Analysis: Analyze financial time series data and market sentiment to predict trends, price movements, and market volatility.
  • Deep Learning for Financial Forecasting: Use deep learning techniques, such as neural networks and LSTM (Long Short-Term Memory) models, to predict stock prices and asset performance.
  • Building a Trading Bot: Create an automated trading system that can execute orders and optimize strategies based on market data.

Who This Book is For:

  • Algorithmic Traders: Traders looking to incorporate machine learning into their strategies and gain an edge in financial markets.
  • Quantitative Analysts & Data Scientists: Professionals eager to apply their programming and data science skills in finance.
  • Investors & Fund Managers: Individuals looking to incorporate advanced predictive models and machine learning for portfolio management and risk analysis.
  • Python Developers: Programmers wanting to expand their skill set into the financial industry and learn how to apply Python for financial data analysis and machine learning.

By the end of this book, you'll have the tools to harness machine learning techniques in your own trading strategies, risk management practices, and market forecasting. Whether you're new to algorithmic trading or looking to refine your strategies, The Algorithmic Edge provides the essential knowledge and skills to leverage the latest in AI and machine learning for superior financial decision-making.

Take your trading to the next level with machine learning today!

商品描述(中文翻譯)

反應式出版

透過演算法優勢:金融市場中的機器學習在金融市場中獲得競爭優勢。本書是一本全面的指南,帶您進入演算法交易的世界,展示如何利用機器學習來設計、優化和執行能夠超越傳統方法的交易策略。本書充滿實用的 Python 範例和真實案例研究,教您如何利用 AI 的力量來改變您的交易、投資組合管理和風險評估策略。

主要特點:



  • 演算法交易介紹:了解演算法交易的基本原理、金融數據對市場的影響,以及如何利用機器學習演算法來開發先進的交易策略。


  • 機器學習技術:學習監督式學習、非監督式學習、強化學習和深度學習,重點介紹它們在交易和風險管理中的應用。


  • 金融市場的 Python:發現如何在 Python 中構建和實施機器學習模型,包括使用 scikit-learn、TensorFlow 和 Keras 等庫來自動化和優化交易策略。


  • 實用案例研究:通過真實的交易範例進行實作,回測策略,並探索市場預測和金融預測的複雜性。


  • 進階主題:探索進階主題,如時間序列分析、情感分析、特徵工程和使用機器學習模型的投資組合優化。

您將學到的內容:



  • 開發交易演算法:學習如何設計和回測獲利的交易策略,利用機器學習。


  • 使用監督式和非監督式學習:應用機器學習技術,如回歸、分類、聚類和強化學習,來構建更好的交易演算法。


  • 情感與時間序列分析:分析金融時間序列數據和市場情感,以預測趨勢、價格變動和市場波動。


  • 金融預測的深度學習:使用深度學習技術,如神經網絡和 LSTM(長短期記憶)模型,來預測股票價格和資產表現。


  • 構建交易機器人:創建一個自動化交易系統,能夠根據市場數據執行訂單和優化策略。

本書適合誰:



  • 演算法交易者:希望將機器學習納入其策略並在金融市場中獲得優勢的交易者。


  • 量化分析師和數據科學家:渴望在金融領域應用其編程和數據科學技能的專業人士。


  • 投資者和基金經理:希望將先進的預測模型和機器學習納入投資組合管理和風險分析的個人。


  • Python 開發者:希望擴展其技能至金融行業並學習如何應用 Python 進行金融數據分析和機器學習的程式設計師。

在本書結束時,您將擁有在自己的交易策略、風險管理實踐和市場預測中利用機器學習技術的工具。無論您是演算法交易的新手還是希望精煉策略的專業人士,演算法優勢提供了利用最新 AI 和機器學習進行卓越金融決策所需的基本知識和技能。

今天就用機器學習將您的交易提升到新水平!