Generative AI Platform Architecture: Building Scalable Solutions

Vemula, Anand

  • 出版商: Independently Published
  • 出版日期: 2024-06-25
  • 售價: $920
  • 貴賓價: 9.5$874
  • 語言: 英文
  • 頁數: 108
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 9798329399547
  • ISBN-13: 9798329399547
  • 相關分類: JVM 語言人工智慧
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

"Generative AI Platform Architecture: Building Scalable Solutions" explores the fundamental principles, design strategies, and practical implementation of generative AI systems. This comprehensive guide equips readers with the knowledge needed to construct robust platforms capable of generating complex outputs across various domains.

The book begins by defining generative AI and its evolution, highlighting key applications in fields like natural language processing, computer vision, and healthcare. It emphasizes the importance of understanding core AI concepts such as neural networks, deep learning, and reinforcement learning, laying a strong foundation for subsequent chapters.

Central to the book is the exploration of platform architecture, focusing on critical components like data collection, preprocessing, model selection, training, evaluation metrics, deployment strategies, and monitoring techniques. Through detailed case studies and real-world examples, readers gain insights into how these components interact to create efficient and scalable generative AI solutions.

Key topics include training strategies, hyperparameter tuning, distributed training techniques, and managing computational resources effectively. Practical tutorials and hands-on exercises with complete solutions deepen understanding and empower readers to apply these concepts in their own projects.

The book also addresses evaluation and validation of generative models, discussing metrics such as Inception Score, Frechet Inception Distance, and BLEU Score, along with cross-validation techniques to ensure model robustness and generalization. Techniques for handling overfitting, underfitting, interpretability, and explainability are also covered, crucial for deploying reliable AI systems.

Looking forward, the book explores emerging trends in generative AI, ethical considerations, regulatory landscapes, and future research directions. It encourages readers to contemplate the societal impacts of AI while staying ahead of technological advancements.

"Generative AI Platform Architecture: Building Scalable Solutions" is an essential resource for AI engineers, data scientists, and researchers looking to deepen their understanding of generative AI systems and build cutting-edge platforms that meet today's and tomorrow's challenges.

商品描述(中文翻譯)

《生成式 AI 平台架構:構建可擴展解決方案》探討了生成式 AI 系統的基本原則、設計策略和實際實施。本書全面的指南使讀者具備構建能夠在各個領域生成複雜輸出的穩健平台所需的知識。

本書首先定義了生成式 AI 及其演變,並突顯了在自然語言處理、計算機視覺和醫療保健等領域的關鍵應用。它強調理解神經網絡、深度學習和強化學習等核心 AI 概念的重要性,為後續章節奠定了堅實的基礎。

本書的核心是平台架構的探討,重點關注數據收集、預處理、模型選擇、訓練、評估指標、部署策略和監控技術等關鍵組件。通過詳細的案例研究和實際範例,讀者能夠深入了解這些組件如何互動以創造高效且可擴展的生成式 AI 解決方案。

主要主題包括訓練策略、超參數調整、分佈式訓練技術以及有效管理計算資源。實用的教程和完整解決方案的實作練習加深了理解,並使讀者能夠在自己的專案中應用這些概念。

本書還探討了生成模型的評估和驗證,討論了如 Inception Score、Frechet Inception Distance 和 BLEU Score 等指標,以及確保模型穩健性和泛化能力的交叉驗證技術。處理過擬合、欠擬合、可解釋性和可解釋性的技術也被涵蓋,這對於部署可靠的 AI 系統至關重要。

展望未來,本書探討了生成式 AI 的新興趨勢、倫理考量、監管環境和未來研究方向。它鼓勵讀者思考 AI 對社會的影響,同時跟上技術進步的步伐。

《生成式 AI 平台架構:構建可擴展解決方案》是 AI 工程師、數據科學家和研究人員深入了解生成式 AI 系統並構建符合當前和未來挑戰的尖端平台的重要資源。