Interpretable Machine Learning: A Guide For Making Black Box Models Explainable (Paperback)
暫譯: 可解釋的機器學習:使黑箱模型可解釋的指南(平裝本)

Christoph Molnar

相關主題

商品描述

This book covers a range of interpretability methods, from inherently interpretable models to methods that can make any model interpretable, such as SHAP, LIME and permutation feature importance. It also includes interpretation methods specific to deep neural networks, and discusses why interpretability is important in machine learning. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted?

商品描述(中文翻譯)

這本書涵蓋了一系列可解釋性方法,從本質上可解釋的模型到可以使任何模型可解釋的方法,例如 SHAP、LIME 和置換特徵重要性。它還包括特定於深度神經網絡的解釋方法,並討論了為什麼可解釋性在機器學習中是重要的。所有解釋方法都進行了深入的解釋和批判性的討論。它們的運作原理是什麼?它們的優勢和劣勢是什麼?如何解釋它們的輸出?