Enterprise Guide for Implementing Generative AI and Agentic AI: A Practical Guide to Developing, Deploying, and Operationalizing Ai-Driven Application
暫譯: 企業實施生成式AI與自主式AI指南:開發、部署及運營AI驅動應用的實用指南

Edward, Shakuntala Gupta, Bhattacharya, Rahul, Sinha, Vikas

  • 出版商: Apress
  • 出版日期: 2025-11-16
  • 售價: $1,580
  • 貴賓價: 9.5$1,501
  • 語言: 英文
  • 頁數: 409
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 9798868816024
  • ISBN-13: 9798868816024
  • 相關分類: Large language model
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Generative AI and Agentic AI together are revolutionizing the technology landscape, with profound and far-reaching impacts across industries. Organizations are increasingly adopting these technologies to drive innovation, enhance unstructured content management, and improve problem-solving capabilities. With Agentic AI, enterprises are moving towards the development of intelligent systems that can plan, reason, and act with autonomy. While early proof-of-concepts (POCs) demonstrated the potential of these technologies, the current shift is toward responsible and scalable production implementations that leverage both generative and agentic capabilities.
This book begins by guiding you through the technological evolution of AI, from early machine learning to today's large language models (LLMs) and agentic systems. It then explores a wide range of use cases across industries, highlighting how LLMs can support decision-making, and how Agentic AI enables dynamic, collaborative systems that act with autonomy and intent. This is followed by Design Patterns across the lifecycle of AI solution development, deployment and monitoring. Readers will then gain insights into the methodologies for developing and deploying Generative and Agentic AI solutions at an enterprise level. A featured implementation demonstrates how Agentic AI can be effectively put into action.
The book also introduces essential concepts such as MLOps, LLMOps, and Responsible AI principles which are critical for transitioning the AI solutions from experimentation to production. These principles ensure that AI deployments are scalable, secure, ethical and compliant. The book concludes with key takeaways and best practices for developing, evaluating, deploying and scaling AI applications responsibly and effectively within enterprise settings.

You Will:

  • Understand key design patterns to develop, deploy and monitor a Generative AI solution effectively.
  • Learn how to develop and implement a production-ready Agentic AI use case.
  • Discover best practices for building scalable, secure, and enterprise-grade AI solutions.
  • Understand how to assess and mitigate risks using Responsible AI principles and LLMOps best practices.

This book is for: Enterprise Software Engineers and Architects

商品描述(中文翻譯)

生成式人工智慧(Generative AI)和代理式人工智慧(Agentic AI)正在共同徹底改變技術領域,對各行各業產生深遠的影響。組織越來越多地採用這些技術來推動創新、增強非結構化內容管理以及改善問題解決能力。透過代理式人工智慧,企業正朝著開發能夠自主規劃、推理和行動的智能系統邁進。雖然早期的概念驗證(POCs)展示了這些技術的潛力,但目前的轉變是朝向負責任且可擴展的生產實施,充分利用生成式和代理式的能力。

本書首先引導您了解人工智慧的技術演變,從早期的機器學習到今天的大型語言模型(LLMs)和代理式系統。接著探討各行各業的廣泛應用案例,強調LLMs如何支持決策,以及代理式人工智慧如何使動態、協作的系統能夠自主且有意圖地行動。隨後介紹人工智慧解決方案開發、部署和監控全生命周期的設計模式。讀者將獲得在企業層面開發和部署生成式及代理式人工智慧解決方案的方法論見解。一個特別的實施案例展示了如何有效地將代理式人工智慧付諸實行。

本書還介紹了關鍵概念,如MLOps、LLMOps和負責任的人工智慧原則,這些對於將人工智慧解決方案從實驗轉向生產至關重要。這些原則確保人工智慧的部署是可擴展的、安全的、道德的和合規的。本書最後總結了在企業環境中負責任且有效地開發、評估、部署和擴展人工智慧應用的關鍵要點和最佳實踐。

您將會:
- 理解關鍵設計模式,以有效地開發、部署和監控生成式人工智慧解決方案。
- 學習如何開發和實施一個準備投入生產的代理式人工智慧應用案例。
- 發現構建可擴展、安全和企業級人工智慧解決方案的最佳實踐。
- 理解如何使用負責任的人工智慧原則和LLMOps最佳實踐來評估和減輕風險。

本書適合:
企業軟體工程師和架構師。

作者簡介

Rahul Bhattacharya is a thought leader, consultant and an active speaker in AI & ML. In his current role as the AI leader of a global firm, he is responsible for working with stakeholders across globe to drive transformative AI programs for clients across industries and functions. With over 30 years of diverse experience in implementing real-world business applications using AI and machine learning globally, Rahul is a trusted advisor and mentor in his field. Rahul is a Birla Institute of Technology and Science (BITS), Pilani graduate and is passionate about learning and teaching. He defines himself as a curious traveler, consummate foodie and lifelong objectivist. A student of global cultures, he has an eclectic taste in literature, music and movies. He is a husband and a father of two Gen-Z boys.

Shakuntala Gupta is a thought leader, consultant in the areas of AI, ML, NLP, Big Data Analytics, product development. In her current role as the AI and Data leader she helps deliver transformative AI programs for clients across various industries and functions. With over two decades of diverse experience in implementing advanced analytics solutions for real-world business challenges using AI, Data and machine learning, Shakuntala is a true technology enthusiast. With a master's degree in computer science, she defines herself as a continuous learner. Outside of her technical work she loves exploring new cuisines, indulges herself in fiction books and cherish her time at beach whenever possible.

Vikas Sinha is a Machine Learning Engineer, Architect and a thought leader in AI & ML. As organizations struggles to scale AI and realize business impact, his role is to conceptualize, build and deploy AI, ML @scale for Clients across sectors globally working with client enterprise and data architects, CDOs and Businesses. Vikas has expertise across cloud platforms and have developed end to end Responsible MLOps, LLMOps architectures on Azure, AWS and GCP enabling clients to productionize multiple AI use cases. He has also led innovations in client engagements through implementation of novel research in multi-modal AI, simplified AI, and enabling operationalization of complex AI architecture as part of enterprise solution. He also mentors' college graduates in the field of Data Science, AI/ML/GenAI/MLOps/LLMOps and have delivered guest lectures at reputed Indian Universities. He is father to a beautiful angel.

作者簡介(中文翻譯)

拉胡爾·巴塔查里亞是一位思想領袖、顧問及人工智慧(AI)與機器學習(ML)領域的活躍演講者。在他目前擔任全球公司的AI領導者的角色中,他負責與全球各地的利益相關者合作,推動各行各業和功能的變革性AI計劃。擁有超過30年的多元經驗,拉胡爾在全球範圍內實施基於AI和機器學習的實際商業應用方面,成為了他所在領域的可信顧問和導師。拉胡爾是比爾拉科技與科學學院(BITS),皮拉尼的畢業生,對學習和教學充滿熱情。他自我定義為一位好奇的旅行者、熱愛美食的饕餮客和終身的客觀主義者。作為全球文化的學生,他在文學、音樂和電影方面有著多元的品味。他是一位丈夫,並且是兩位Z世代男孩的父親。

沙昆塔拉·古普塔是一位思想領袖,專注於AI、ML、自然語言處理(NLP)、大數據分析和產品開發的顧問。在她目前擔任AI和數據領導者的角色中,她幫助為各行各業和功能的客戶提供變革性AI計劃。擁有超過二十年的多元經驗,沙昆塔拉在使用AI、數據和機器學習解決實際商業挑戰方面實施先進分析解決方案,是一位真正的技術愛好者。她擁有計算機科學碩士學位,自我定義為一位持續學習者。在技術工作之外,她喜歡探索新料理,沉浸於小說書籍中,並在有可能的時候珍惜在海灘的時光。

維卡斯·辛哈是一位機器學習工程師、架構師及AI與ML領域的思想領袖。隨著組織在擴展AI和實現商業影響方面的掙扎,他的角色是為全球各行業的客戶構思、構建和部署大規模的AI和ML解決方案,與客戶的企業和數據架構師、首席數據官(CDO)及業務部門合作。維卡斯在雲平台方面擁有專業知識,並在Azure、AWS和GCP上開發了端到端的負責任的MLOps和LLMOps架構,使客戶能夠將多個AI用例投入生產。他還通過在多模態AI、簡化AI的創新研究實施中,推動了客戶參與的創新,並作為企業解決方案的一部分,使複雜的AI架構得以運營化。他還指導大學畢業生在數據科學、AI/ML/GenAI/MLOps/LLMOps領域,並在印度知名大學進行過客座講座。他是一位美麗天使的父親。