Machine Learning and Artificial Intelligence: Concepts, Algorithms and Models
暫譯: 機器學習與人工智慧:概念、演算法與模型
Rawassizadeh, Reza
- 出版商: Reza Rawassizadeh
- 出版日期: 2025-03-15
- 售價: $4,160
- 貴賓價: 9.5 折 $3,952
- 語言: 英文
- 頁數: 1168
- 裝訂: Quality Paper - also called trade paper
- ISBN: 9798992162110
- ISBN-13: 9798992162110
-
相關分類:
Machine Learning、DeepLearning、Reinforcement、Data-visualization
海外代購書籍(需單獨結帳)
商品描述
Mastering AI, machine learning, and data science often means piecing together concepts scattered across countless resources, statistics, and visualizations to foundational models and large language models. This book, the result of eight years of effort, brings it all together in one accessible, engaging package. It clarifies artificial intelligence and data science, blending core mathematical principles with a clear, reader-friendly approach.
Unlike traditional textbooks that lean heavily on equations and mathematical formalization, the author starts with minimal prerequisites, layering deeper math as the reader progresses. Each concept, algorithm, or model is unpacked through clear, hands-on examples that build the reader's skills step by step. It strikes a balance between theoretical foundations and practical application, serving as both an academic reference and a practical guide.
Furthermore, the book uses humor, casual language, and comics to make the challenging concepts and topics relatable and fun. Any resemblance between the jokes and real life is pure coincidence, and no offense is intended.
Table of Contents
- Part I: Introduction & Preliminary Requirements
- Chapter 1: Basic Concepts
- Chapter 2: Visualization
- Chapter 3: Probability and Statistics
- Part II: Unsupervised Learning
- Chapter 4: Clustering
- Chapter 5: Frequent Itemset, Sequence Mining and Information Retrieval
- Part III: Data Engineering
- Chapter 6: Feature Engineering
- Chapter 7: Dimensionality Reduction and Data Decomposition
- Part IV: Supervised Learning
- Chapter 8: Regression Analysis
- Chapter 9: Classification
- Part V: Neural Network
- Chapter 10: Neural Networks and Deep Learning
- Chapter 11: Self-Supervised Deep Learning
- Chapter 12: Deep Learning Models and Applications (Text, Vision, and Audio)
- Part VI: Reinforcement Learning
- Chapter 13: Reinforcement Learning
- Part VII: Other Algorithms and Concepts
- Chapter 14: Making Lighter Neural Network and Machine Learning Models
- Chapter 15: Graph Mining Algorithms
- Chapter 16: Concepts and Challenges of Working with Data
商品描述(中文翻譯)
掌握人工智慧、機器學習和資料科學通常意味著將散佈在無數資源、統計數據和視覺化中的概念拼湊在一起,從基礎模型到大型語言模型。本書經過八年的努力,將這一切整合在一個易於接觸且引人入勝的包裝中。它澄清了人工智慧和資料科學,將核心數學原則與清晰、易讀的方式相結合。
與傳統教科書重度依賴方程式和數學形式化不同,作者從最少的前置知識開始,隨著讀者的進步逐步增加更深的數學內容。每個概念、演算法或模型都通過清晰的實作範例進行拆解,逐步建立讀者的技能。它在理論基礎和實際應用之間取得平衡,既可作為學術參考,也可作為實用指南。
此外,本書使用幽默、隨意的語言和漫畫,使挑戰性的概念和主題變得易於理解且有趣。任何笑話與現實生活的相似之處純屬巧合,並無冒犯之意。
**目錄**
第一部分:介紹與初步要求
- 第1章:基本概念
- 第2章:視覺化
- 第3章:機率與統計
第二部分:無監督學習
- 第4章:聚類
- 第5章:頻繁項集、序列挖掘與資訊檢索
第三部分:資料工程
- 第6章:特徵工程
- 第7章:降維與資料分解
第四部分:監督學習
- 第8章:迴歸分析
- 第9章:分類
第五部分:神經網路
- 第10章:神經網路與深度學習
- 第11章:自我監督深度學習
- 第12章:深度學習模型與應用(文本、視覺與音頻)
第六部分:強化學習
- 第13章:強化學習
第七部分:其他演算法與概念
- 第14章:製作更輕量的神經網路與機器學習模型
- 第15章:圖挖掘演算法
- 第16章:處理資料的概念與挑戰