Measuring Data Quality for Ongoing Improvement: A Data Quality Assessment Framework (Paperback)
暫譯: 持續改進的數據質量測量:數據質量評估框架 (平裝本)
Laura Sebastian-Coleman
- 出版商: Morgan Kaufmann
- 出版日期: 2013-01-11
- 定價: $1,750
- 售價: 8.0 折 $1,400
- 語言: 英文
- 頁數: 376
- 裝訂: Paperback
- ISBN: 0123970334
- ISBN-13: 9780123970336
-
相關分類:
Data-visualization
立即出貨 (庫存=1)
買這商品的人也買了...
-
深入淺出 Java 程式設計, 2/e (Head First Java, 2/e)$880$695 -
Journey to Data Quality (Hardcover)$1,530$1,454 -
軟體建構之道 (Code Complete, 2/e)$1,200$1,020 -
深入淺出 Python (Head First Python)$780$616 -
24 小時不打烊的雲端服務-專家教你用 CentOS 架設萬年不掛的伺服器
$680$530 -
Android 4.X 手機/平板電腦程式設計入門、應用到精通, 2/e (適用 Android 1.X~4.X)$520$411 -
Android 核心剖析$650$514 -
Visual C# 2012 視窗程式設計-繪圖與遊戲專題$580$458 -
ASP.NET MVC 4 網站開發美學$680$537 -
Visual C# 2012 資料庫程式設計暨進銷存系統實作$650$514 -
Raspberry Pi 基本套組(Raspberry Pi rev 2 Model B 512MB + 壓克力外殼 + 散熱片 + 5V/2000mA USB 變壓器)$2,000$1,900 -
Raspberry Pi 快速上手指南 (Raspberry Pi:A Quick-Start Guide)$420$378 -
Android App 程式設計教本之無痛起步$480$408 -
超圖解 Arduino 互動設計入門 (附 Arduino UNO R3 開發板)$1,130$961 -
易讀程式之美學-提升程式碼可讀性的簡單法則 (The Art of Readable Code)$480$379 -
搞懂 NoSQL 的 15 堂課 (NoSQL Distilled 中文版) (NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence)$360$284 -
Excel VBA 活用範例大辭典 (2013修訂版)$560$437 -
無瑕的程式碼-敏捷軟體開發技巧守則 + 番外篇-專業程式設計師的生存之道 (雙書合購)$940$700 -
Kent Beck 的實作模式 (Implementation Patterns)$320$272 -
Android APP 程式開發剖析 (適用 Android 3.x~4.x)$550$435 -
透視 C語言指標-深度探索記憶體管理核心技術 (Understanding and Using C Pointers)$480$379 -
雲端網頁程式設計-Google App Engine 應用實作, 2/e$480$374 -
SQL Server 2012 專業開發與設計
$680$530 -
那些 APP 好用的祕密 : 黏住使用者的魅力 & UX 好感度設計$550$429 -
培養與鍛鍊程式設計的邏輯腦:世界級程式設計大賽的知識、心得與解題分享, 2/e (CPE 大學程式能力檢定最佳參考用書)$520$406
相關主題
商品描述
The Data Quality Assessment Framework shows you how to measure and monitor data quality, ensuring quality over time. You'll start with general concepts of measurement and work your way through a detailed framework of more than three dozen measurement types related to five objective dimensions of quality: completeness, timeliness, consistency, validity, and integrity. Ongoing measurement, rather than one time activities will help your organization reach a new level of data quality. This plain-language approach to measuring data can be understood by both business and IT and provides practical guidance on how to apply the DQAF within any organization enabling you to prioritize measurements and effectively report on results. Strategies for using data measurement to govern and improve the quality of data and guidelines for applying the framework within a data asset are included. You'll come away able to prioritize which measurement types to implement, knowing where to place them in a data flow and how frequently to measure. Common conceptual models for defining and storing of data quality results for purposes of trend analysis are also included as well as generic business requirements for ongoing measuring and monitoring including calculations and comparisons that make the measurements meaningful and help understand trends and detect anomalies.
- Demonstrates how to leverage a technology independent data quality measurement framework for your specific business priorities and data quality challenges
- Enables discussions between business and IT with a non-technical vocabulary for data quality measurement
- Describes how to measure data quality on an ongoing basis with generic measurement types that can be applied to any situation
商品描述(中文翻譯)
《資料品質評估框架》展示了如何衡量和監控資料品質,確保隨著時間的推移保持品質。您將從一般的衡量概念開始,然後深入了解與五個客觀品質維度相關的三十多種詳細衡量類型:完整性、及時性、一致性、有效性和完整性。持續的衡量,而非一次性的活動,將幫助您的組織達到新的資料品質水平。這種以簡單語言衡量資料的方法,無論是商業還是IT人員都能理解,並提供了如何在任何組織內應用資料品質評估框架(DQAF)的實用指導,使您能夠優先考慮衡量指標並有效報告結果。文中還包括使用資料衡量來治理和改善資料品質的策略,以及在資料資產內應用該框架的指導方針。您將能夠優先考慮實施哪些衡量類型,了解它們在資料流中的位置以及測量的頻率。還包括用於趨勢分析的資料品質結果定義和儲存的常見概念模型,以及持續測量和監控的通用商業需求,包括使測量有意義的計算和比較,幫助理解趨勢和檢測異常。
- 演示如何利用與技術無關的資料品質衡量框架來應對您的特定商業優先事項和資料品質挑戰
- 促進商業與IT之間的討論,使用非技術性詞彙進行資料品質衡量
- 描述如何使用通用的衡量類型持續測量資料品質,這些類型可應用於任何情況
