GPU-based Parallel Implementation of Swarm Intelligence Algorithms
暫譯: 基於GPU的群體智慧演算法平行實現
Ying Tan
- 出版商: Morgan Kaufmann
- 出版日期: 2016-04-05
- 定價: $3,260
- 售價: 8.0 折 $2,608
- 語言: 英文
- 頁數: 256
- 裝訂: Paperback
- ISBN: 0128093625
- ISBN-13: 9780128093627
-
相關分類:
Machine Learning
立即出貨 (庫存=1)
買這商品的人也買了...
-
大話資料結構$590$466 -
建立嵌入式系統-傑出軟體的設計模式 (Making Embedded Systems: Design Patterns for Great Software)$680$537 -
16 x 2 背光 LCD$100$95 -
超圖解 Arduino 互動設計入門, 2/e$680$578 -
C++ API 設計 (API Design for C++)$550$435 -
Python 程式設計入門 (適用於 2.x 與 3.x 版)$620$484 -
Windows 軟體安全實務 -- 緩衝區溢位攻擊$480$379 -
精通 Python|運用簡單的套件進行現代運算 (Introducing Python: Modern Computing in Simple Packages)$780$616 -
$354逆向工程實戰 (Practical Reverse Engineering: x86, x64, ARM, Windows Kernel, Reversing Tools, and Obfuscatio) -
黑帽 Python | 給駭客與滲透測試者的 Python 開發指南 (Black Hat Python: Python Programming for Hackers and Pentesters)$400$316 -
Unity 遊戲開發:從基礎到 APP 上架獲利$620$490 -
Kali Linux 滲透測試工具, 2/e$500$395 -
iOS 9 App 程式設計實力超進化實戰攻略:知名iOS教學部落格AppCoda作家親授實作關鍵技巧讓你不NG (Beginning iOS 9 Programming with Swift)$690$538 -
深入淺出 JavaScript 程式設計 (Head First JavaScript Programming)$980$774 -
7天學會 Git 版本控制 (Git Essentials)$280$218 -
網站入侵現場鑑證實錄$380$300 -
SEO 超入門 -- 教你免費又有效的網站行銷好點子$450$383 -
科學運算 : Python程式理論與應用$860$731 -
利用R語言打通大數據的經脈, 2/e$490$417 -
Android 初學特訓班|最新 Android Studio 開發實戰, 6/e$480$379 -
7天學會大數據資料處理—NoSQL:MongoDB入門與活用$320$250 -
Raspberry Pi 3 Model B (Made in the U.K.)$1,600$1,600 -
職業駭客的告白 : 軟體反組譯、木馬病毒與入侵翻牆竊密$620$484 -
FLAG'S 創客‧自造者工作坊 #1 (10+實驗) (「Arduino 超入門: 創客‧自造者的原力」書+實驗套件)$699$629 -
Effective Modern C++:提昇 C++11 與 C++14 技術的 42個具體作法 (中文版)(Effective Modern C++: 42 Specific Ways to Improve Your Use of C++11 and C++14)$580$458
相關主題
商品描述
GPU-based Parallel Implementation of Swarm Intelligence Algorithms combines and covers two emerging areas attracting increased attention and applications: graphics processing units (GPUs) for general-purpose computing (GPGPU) and swarm intelligence. This book not only presents GPGPU in adequate detail, but also includes guidance on the appropriate implementation of swarm intelligence algorithms on the GPU platform.
GPU-based implementations of several typical swarm intelligence algorithms such as PSO, FWA, GA, DE, and ACO are presented and having described the implementation details including parallel models, implementation considerations as well as performance metrics are discussed. Finally, several typical applications of GPU-based swarm intelligence algorithms are presented. This valuable reference book provides a unique perspective not possible by studying either GPGPU or swarm intelligence alone.
This book gives a complete and whole picture for interested readers and new comers who will find many implementation algorithms in the book suitable for immediate use in their projects. Additionally, some algorithms can also be used as a starting point for further research.
- Presents a concise but sufficient introduction to general-purpose GPU computing which can help the layman become familiar with this emerging computing technique
- Describes implementation details, such as parallel models and performance metrics, so readers can easily utilize the techniques to accelerate their algorithmic programs
- Appeals to readers from the domain of high performance computing (HPC) who will find the relatively young research domain of swarm intelligence very interesting
- Includes many real-world applications, which can be of great help in deciding whether or not swarm intelligence algorithms or GPGPU is appropriate for the task at hand
商品描述(中文翻譯)
《基於 GPU 的群體智慧演算法平行實作》結合並涵蓋了兩個日益受到關注和應用的新興領域:用於通用計算的圖形處理單元(GPGPU)和群體智慧。本書不僅詳細介紹了 GPGPU,還提供了在 GPU 平台上適當實作群體智慧演算法的指導。
本書介紹了幾種典型的群體智慧演算法的 GPU 實作,例如粒子群優化(PSO)、魚群演算法(FWA)、遺傳演算法(GA)、差分演算法(DE)和螞蟻演算法(ACO),並描述了實作細節,包括平行模型、實作考量以及性能指標的討論。最後,還介紹了幾個基於 GPU 的群體智慧演算法的典型應用。本書作為一部寶貴的參考書,提供了無法僅通過研究 GPGPU 或群體智慧單獨獲得的獨特視角。
本書為有興趣的讀者和新手提供了完整的全貌,讀者將發現書中有許多適合立即在其專案中使用的實作演算法。此外,一些演算法也可以作為進一步研究的起點。
- 提供了簡明但足夠的通用 GPU 計算介紹,幫助外行人熟悉這一新興計算技術
- 描述了實作細節,如平行模型和性能指標,使讀者能夠輕鬆利用這些技術來加速其演算法程式
- 吸引高效能計算(HPC)領域的讀者,他們會發現相對年輕的群體智慧研究領域非常有趣
- 包含許多實際應用,這對於決定群體智慧演算法或 GPGPU 是否適合當前任務非常有幫助
