Neural Networks and Learning Machines, 3/e (Hardcover)
暫譯: 神經網絡與學習機器,第3版 (精裝本)
Simon O. Haykin
- 出版商: Prentice Hall
- 出版日期: 2008-06-01
- 售價: $10,200
- 貴賓價: 9.5 折 $9,690
- 語言: 英文
- 頁數: 936
- 裝訂: Hardcover
- ISBN: 0131471392
- ISBN-13: 9780131471399
-
相關分類:
Machine Learning
-
相關翻譯:
神經網絡與機器學習, 3/e (簡中版)
-
其他版本:
Neural Networks and Learning Machines, 3/e (IE-Paperback)
買這商品的人也買了...
-
Linux 驅動程式, 3/e (Linux Device Drivers, 3/e)$980$774 -
現代嵌入式系統開發專案實務-菜鳥成長日誌與專案經理的私房菜$600$480 -
Pattern Recognition and Neural Networks$2,660$2,527 -
深入淺出 C# (Head First C#)$980$774 -
Visual C++ 數位影像處理技術大全$620$490 -
Silverlight 2.0 範例權威講座$540$459 -
大話設計模式$620$490 -
Visual C# 2008 程式設計實例演練與系統開發$650$507 -
Linux 裝置驅動程式之開發詳解$780$616 -
ASP.NET 3.5 應用系統專題實作$590$460 -
Silverlight 2.0 精華技術手冊─使用VC#+WPF程式設計(套書)$650$514 -
30 天打造 OS!作業系統自作入門$780$616 -
精通 JavaScript + jQuery$580$458 -
Google!Android 手機應用程式設計入門$520$411 -
VMware Virtual Infrastructure 及 Hyper-V R2 企業級超應用$680$578 -
網頁設計驚嘆號-Dreamweaver 至高的網頁特效 188 招$650$514 -
Google Android 程式設計與應用$520$442 -
聖殿祭司的 ASP.NET 3.5 專家技術手冊 I 核心功能篇-使用 C#$650$514 -
InDesign 達人之道(套書) (InDesign 的行家問題-圖文編排篇 + 印前輸出與實作篇)$699$552 -
精通 Objective-C 2.0 程式設計 (Programming in Objective-C 2.0, 2/e)$680$537 -
Linux 驅動程式開發實戰 (Essential Linux Device Drivers)$750$593 -
Wireshark 網路協定分析與管理$480$374 -
Probability, Random Variables, and Random Processes: Theory and Signal Processing Applications (Hardcover)$4,900$4,655 -
Real-Time Digital Signal Processing: Fundamentals, Implementations and Applications, 3/e (Hardcover)$1,760$1,725 -
Sparse Modeling: Theory, Algorithms, and Applications (Hardcover)$3,100$2,945
商品描述
Fluid and authoritative, this well-organized book represents the first comprehensive treatment of neural networks and learning machines from an engineering perspective, providing extensive, state-of-the-art coverage that will expose readers to the myriad facets of neural networks and help them appreciate the technology's origin, capabilities, and potential applications. Examines all the important aspects of this emerging technology, covering the learning process, back propogation, radial basis functions, recurrent networks, self-organizing systems, modular networks, temporal processing, neurodynamics, and VLSI implementation. Integrates computer experiments throughout to demonstrate how neural networks are designed and perform in practice. Chapter objectives, problems, worked examples, a bibliography, photographs, illustrations, and a thorough glossary all reinforce concepts throughout. New chapters delve into such areas as support vector machines, and reinforcement learning/neurodynamic programming, Rosenblatt’s Perceptron, Least-Mean-Square Algorithm, Regularization Theory, Kernel Methods and Radial-Basis function networks (RBF), and Bayseian Filtering for State Estimation of Dynamic Systems. An entire chapter of case studies illustrates the real-life, practical applications of neural networks. A highly detailed bibliography is included for easy reference. For professional engineers and research scientists.
Matlab codes used for the computer experiments in the text are available for download at: http://www.pearsonhighered.com/haykin/
商品描述(中文翻譯)
流暢且權威,這本組織良好的書籍是從工程學角度對神經網絡和學習機器的首次全面探討,提供廣泛的最先進覆蓋,讓讀者接觸到神經網絡的各種面向,並幫助他們理解這項技術的起源、能力和潛在應用。這本書檢視了這項新興技術的所有重要方面,涵蓋學習過程、反向傳播、徑向基函數、遞歸網絡、自組織系統、模組化網絡、時間處理、神經動力學以及VLSI實現。書中整合了計算機實驗,以展示神經網絡的設計和實際表現。每章的目標、問題、範例、參考書目、照片、插圖和詳細的術語表都強化了概念的理解。新章節深入探討支持向量機、強化學習/神經動力編程、Rosenblatt的感知器、最小均方算法、正則化理論、核方法和徑向基函數網絡(RBF)、以及動態系統的狀態估計的貝葉斯濾波。整個章節的案例研究展示了神經網絡的現實實用應用。書中還包含了詳細的參考書目,方便查閱。適合專業工程師和研究科學家。
文本中用於計算機實驗的Matlab代碼可在以下網址下載:http://www.pearsonhighered.com/haykin/
