Neural Networks and Learning Machines, 3/e (Hardcover)
Simon O. Haykin
- 出版商: Pearson
- 出版日期: 2008-11-28
- 售價: $9,984
- 貴賓價: 9.5 折 $9,485
- 語言: 英文
- 頁數: 936
- 裝訂: Hardcover
- ISBN: 0131471392
- ISBN-13: 9780131471399
無法訂購
買這商品的人也買了...
-
$980$882Linux 驅動程式, 3/e (Linux Device Drivers, 3/e)
-
$600$480現代嵌入式系統開發專案實務-菜鳥成長日誌與專案經理的私房菜
-
$2,020$1,919Pattern Recognition and Neural Networks
-
$980$774深入淺出 C# (Head First C#)
-
$620$527Visual C++ 數位影像處理技術大全
-
$540$459Silverlight 2.0 範例權威講座
-
$620$527大話設計模式
-
$650$507Visual C# 2008 程式設計實例演練與系統開發
-
$780$663Linux 裝置驅動程式之開發詳解
-
$590$460ASP.NET 3.5 應用系統專題實作
-
$650$520Silverlight 2.0 精華技術手冊─使用VC#+WPF程式設計(套書)
-
$780$66330 天打造 OS!作業系統自作入門
-
$580$493精通 JavaScript + jQuery
-
$520$442Google!Android 手機應用程式設計入門
-
$680$578VMware Virtual Infrastructure 及 Hyper-V R2 企業級超應用
-
$650$553網頁設計驚嘆號-Dreamweaver 至高的網頁特效 188 招
-
$520$442Google Android 程式設計與應用
-
$650$520聖殿祭司的 ASP.NET 3.5 專家技術手冊 I 核心功能篇-使用 C#
-
$699$629InDesign 達人之道(套書) (InDesign 的行家問題-圖文編排篇 + 印前輸出與實作篇)
-
$680$544精通 Objective-C 2.0 程式設計 (Programming in Objective-C 2.0, 2/e)
-
$750$638Linux 驅動程式開發實戰 (Essential Linux Device Drivers)
-
$480$374Wireshark 網路協定分析與管理
-
$4,976$4,727Probability, Random Variables, and Random Processes: Theory and Signal Processing Applications (Hardcover)
-
$1,760$1,672Real-Time Digital Signal Processing: Fundamentals, Implementations and Applications, 3/e (Hardcover)
-
$2,640$2,508Sparse Modeling: Theory, Algorithms, and Applications (Hardcover)
商品描述
Fluid and authoritative, this well-organized book represents the first comprehensive treatment of neural networks and learning machines from an engineering perspective, providing extensive, state-of-the-art coverage that will expose readers to the myriad facets of neural networks and help them appreciate the technology's origin, capabilities, and potential applications. Examines all the important aspects of this emerging technology, covering the learning process, back propogation, radial basis functions, recurrent networks, self-organizing systems, modular networks, temporal processing, neurodynamics, and VLSI implementation. Integrates computer experiments throughout to demonstrate how neural networks are designed and perform in practice. Chapter objectives, problems, worked examples, a bibliography, photographs, illustrations, and a thorough glossary all reinforce concepts throughout. New chapters delve into such areas as support vector machines, and reinforcement learning/neurodynamic programming, Rosenblatt’s Perceptron, Least-Mean-Square Algorithm, Regularization Theory, Kernel Methods and Radial-Basis function networks (RBF), and Bayseian Filtering for State Estimation of Dynamic Systems. An entire chapter of case studies illustrates the real-life, practical applications of neural networks. A highly detailed bibliography is included for easy reference. For professional engineers and research scientists.
Matlab codes used for the computer experiments in the text are available for download at: http://www.pearsonhighered.com/haykin/