Machine Learning Foundations, Volume 1: Supervised Learning
暫譯: 機器學習基礎,第1卷:監督式學習
Yehoshua, Roi
- 出版商: Addison Wesley
- 出版日期: 2026-02-02
- 售價: $3,030
- 貴賓價: 9.5 折 $2,878
- 語言: 英文
- 頁數: 880
- 裝訂: Quality Paper - also called trade paper
- ISBN: 0135337860
- ISBN-13: 9780135337868
-
相關分類:
Machine Learning
海外代購書籍(需單獨結帳)
相關主題
商品描述
The Essential Guide to Machine Learning in the Age of AI
Machine learning stands at the heart of today's most transformative technologies: advancing scientific discovery, reshaping industries, and transforming everyday life. From large language models to medical diagnosis and autonomous vehicles, the demand for robust, principled machine learning models has never been greater.
Machine Learning Foundations, Volume 1: Supervised Learning offers a comprehensive and accessible roadmap to the core algorithms and concepts behind modern AI systems. Balancing mathematical rigor with hands-on implementation, this book not only teaches how machine learning works, but why it works.
As part of a three-volume series, Volume 1 lays the foundation for mastering the full landscape of modern machine learning, including deep learning, large language models, and cutting-edge research. Whether you are a student starting out, a researcher seeking a reliable reference, or a practitioner looking to sharpen your skills, this book equips you with the knowledge and tools needed to succeed in the era of intelligent systems.
Each chapter introduces core ideas with clear intuition, supports them with rigorous mathematical derivations where appropriate, and demonstrates how to implement the methods in Python, while also addressing practical considerations such as data preparation and hyperparameter tuning. Exercises at the end of each chapter, both theoretical and programming-based, reinforce understanding and promote active learning.
- Master the key concepts of supervised machine learning, including model capacity, the bias-variance tradeoff, generalization, and optimization techniques
- Implement the full supervised learning pipeline, from data preprocessing and feature engineering to model selection, training, and evaluation
- Understand key learning tasks, including classification, regression, multi-label, and multi-output problems
- Implement foundational algorithms from scratch, including linear and logistic regression, decision trees, gradient boosting, and SVMs
- Gain hands-on experience with industry-standard tools such as Scikit-Learn, XGBoost, and NLTK
- Refine and optimize your models using techniques such as hyperparameter tuning, cross-validation, and calibration
- Work with diverse data types including tabular data, text, and images
- Address real-world challenges such as imbalanced datasets, missing data, and high-dimensional inputs
The book includes hundreds of fully annotated code examples, available on GitHub at github.com/roiyeho/ml-book, along with six comprehensive online appendices covering essential background in linear algebra, calculus, probability, statistics, optimization, and Python libraries such as NumPy, Pandas, and Matplotlib.
商品描述(中文翻譯)
人工智慧時代的機器學習必備指南
機器學習是當今最具變革性的技術核心:推進科學發現、重塑產業並改變日常生活。從大型語言模型到醫療診斷和自動駕駛車輛,對於穩健且有原則的機器學習模型的需求從未如此之大。
機器學習基礎,第1卷:監督式學習 提供了一個全面且易於理解的路線圖,介紹現代人工智慧系統背後的核心演算法和概念。本書在數學嚴謹性與實作之間取得平衡,不僅教你機器學習如何運作,還解釋了為什麼它能運作。
作為三卷系列的一部分,第1卷為掌握現代機器學習的全貌奠定基礎,包括深度學習、大型語言模型和前沿研究。無論你是剛入門的學生、尋求可靠參考的研究人員,還是希望提升技能的實務工作者,本書都能為你提供在智能系統時代成功所需的知識和工具。
每一章都以清晰的直覺介紹核心概念,並在適當的地方用嚴謹的數學推導來支持這些概念,還展示了如何在 Python 中實作這些方法,同時考慮到數據準備和超參數調整等實際問題。每章結尾的練習題,包括理論和編程基礎,強化理解並促進主動學習。
- 掌握監督式機器學習的關鍵概念,包括模型容量、偏差-方差權衡、泛化和優化技術
- 實作完整的監督式學習流程,從數據預處理和特徵工程到模型選擇、訓練和評估
- 理解關鍵學習任務,包括分類、回歸、多標籤和多輸出問題
- 從零開始實作基礎演算法,包括線性回歸、邏輯回歸、決策樹、梯度提升和支持向量機(SVM)
- 使用行業標準工具如 Scikit-Learn、XGBoost 和 NLTK 獲得實作經驗
- 使用超參數調整、交叉驗證和校準等技術來精煉和優化模型
- 處理各種數據類型,包括表格數據、文本和圖像
- 解決現實世界中的挑戰,如不平衡數據集、缺失數據和高維輸入
本書包含數百個完整註解的代碼範例,並可在 GitHub 上獲得,網址為 github.com/roiyeho/ml-book,還附有六個全面的在線附錄,涵蓋線性代數、微積分、概率、統計、優化及 Python 庫(如 NumPy、Pandas 和 Matplotlib)的基本背景知識。
作者簡介
Roi Yehoshua is a professor in the Department of Electrical and Computer Engineering at Northeastern University, where he develops and teaches graduate courses in machine learning and data science. With over two decades of experience spanning academia and industry, he has developed and taught a wide range of machine learning courses, including pioneering the university's first course on Large Language Models. His writing on machine learning has reached over 200,000 readers worldwide through platforms like Medium and Towards Data Science.
作者簡介(中文翻譯)
Roi Yehoshua 是東北大學電機與計算機工程系的教授,專注於開發和教授研究生課程,涵蓋機器學習和數據科學。擁有超過二十年的學術和產業經驗,他開發並教授了多種機器學習課程,包括該大學首個大型語言模型(Large Language Models)課程。他在機器學習方面的著作已通過 Medium 和 Towards Data Science 等平台觸及全球超過 200,000 名讀者。