New Foundations for Physical Geometry: The Theory of Linear Structures (Hardcover)
暫譯: 物理幾何的新基礎:線性結構理論 (精裝版)
Tim Maudlin
- 出版商: Oxford University
- 出版日期: 2014-05-15
- 售價: $1,400
- 貴賓價: 9.8 折 $1,372
- 語言: 英文
- 頁數: 376
- 裝訂: Hardcover
- ISBN: 0198701306
- ISBN-13: 9780198701309
-
相關分類:
離散數學 Discrete-mathematics
下單後立即進貨 (約5~7天)
買這商品的人也買了...
-
大話設計模式$620$490 -
電腦網際網路, 6/e (國際版)(Computer Networking: A Top-Down Approach, 6/e)(附部分內容光碟)$650$585 -
Visual C++ 2012 教學手冊 (Ivor Horton's Beginning Visual C++ 2012)$780$616 -
ASP.NET MVC 5 網站開發美學$780$616 -
全面攻略 P2P 主流技術 (全面攔截 P2P 主流技術(P2P 技術完全攻略))$540$459 -
精通 Python|運用簡單的套件進行現代運算 (Introducing Python: Modern Computing in Simple Packages)$780$616 -
完整學會 Git, GitHub, Git Server 的24堂課$360$284 -
Unity 3D 跨平台遊戲製作的15堂課$450$356 -
Project 2016 實戰演練-協助團隊實現商業價值目標的專案管理工具$550$468 -
Raspberry Pi 嵌入式系統入門與應用實作$480$379 -
CSS: The Missing Manual, 4/e (國際中文版)$680$537 -
圖解密碼學與比特幣原理$580$458 -
Python 初學特訓班 (附250分鐘影音教學/範例程式)$480$379 -
Python 自動化的樂趣|搞定重複瑣碎 & 單調無聊的工作 (中文版) (Automate the Boring Stuff with Python: Practical Programming for Total Beginners)$500$425 -
演算法技術手冊, 2/e (Algorithms in a Nutshell: A Practical Guide, 2/e)$580$458 -
Android App 程式設計教本之無痛起步 -- 使用 Android Studio 2.X 開發環境$580$458 -
$294玩家思維 : 遊戲設計師的自我修養 -
系統管理員懶人包|Shell Script 自動化指令集 (Wicked Cool Shell Scripts)$480$379 -
Windows Server 2016 系統建置實務$680$537 -
從人到人工智慧,破解 AI 革命的 68個核心概念:實戰專家全圖解 × 人腦不被電腦淘汰的關鍵思考$360$284 -
無瑕的程式碼-敏捷完整篇-物件導向原則、設計模式與 C# 實踐 (Agile principles, patterns, and practices in C#)$790$616 -
全能 Android 絕對正確培養聖經$720$612 -
TensorFlow + Keras 深度學習人工智慧實務應用$590$460 -
Agile 成功法則|敏捷實作者的解決方案 (Real World Agility: Practical Guidance for Agile Practitioners)$480$408 -
寫程式前就該懂的演算法 ─ 資料分析與程式設計人員必學的邏輯思考術 (Grokking Algorithms: An illustrated guide for programmers and other curious people)$390$308
商品描述
Topology is the mathematical study of the most basic geometrical structure of a space. Mathematical physics uses topological spaces as the formal means for describing physical space and time. This book proposes a completely new mathematical structure for describing geometrical notions such as continuity, connectedness, boundaries of sets, and so on, in order to provide a better mathematical tool for understanding space-time. This is the initial volume in a two-volume set, the first of which develops the mathematical structure and the second of which applies it to classical and Relativistic physics.
The book begins with a brief historical review of the development of mathematics as it relates to geometry, and an overview of standard topology. The new theory, the Theory of Linear Structures, is presented and compared to standard topology. The Theory of Linear Structures replaces the foundational notion of standard topology, the open set, with the notion of a continuous line. Axioms for the Theory of Linear Structures are laid down, and definitions of other geometrical notions developed in those terms. Various novel geometrical properties, such as a space being intrinsically directed, are defined using these resources. Applications of the theory to discrete spaces (where the standard theory of open sets gets little purchase) are particularly noted. The mathematics is developed up through homotopy theory and compactness, along with ways to represent both affine (straight line) and metrical structure.
The book begins with a brief historical review of the development of mathematics as it relates to geometry, and an overview of standard topology. The new theory, the Theory of Linear Structures, is presented and compared to standard topology. The Theory of Linear Structures replaces the foundational notion of standard topology, the open set, with the notion of a continuous line. Axioms for the Theory of Linear Structures are laid down, and definitions of other geometrical notions developed in those terms. Various novel geometrical properties, such as a space being intrinsically directed, are defined using these resources. Applications of the theory to discrete spaces (where the standard theory of open sets gets little purchase) are particularly noted. The mathematics is developed up through homotopy theory and compactness, along with ways to represent both affine (straight line) and metrical structure.
商品描述(中文翻譯)
拓撲學是對空間最基本幾何結構的數學研究。數學物理學使用拓撲空間作為描述物理空間和時間的正式手段。本書提出了一種全新的數學結構,用於描述連續性、連通性、集合的邊界等幾何概念,以提供更好的數學工具來理解時空。本書是兩卷本的第一卷,第一卷發展數學結構,第二卷則將其應用於經典物理學和相對論物理學。
本書首先簡要回顧了數學與幾何相關的發展歷史,並概述了標準拓撲學。新理論,即線性結構理論,將被介紹並與標準拓撲學進行比較。線性結構理論用連續線的概念取代了標準拓撲學的基礎概念——開集合。線性結構理論的公理被確立,並以此為基礎發展其他幾何概念的定義。各種新穎的幾何性質,例如空間的內在方向性,將使用這些資源進行定義。該理論在離散空間中的應用(在標準開集合理論中幾乎無法獲得的地方)特別受到關注。數學發展涵蓋了同倫理論和緊緻性,以及表示仿射(直線)和度量結構的方法。
