Machine Learning: A Probabilistic Perspective
暫譯: 機器學習:一種概率觀點
Kevin P. Murphy
- 出版商: MIT
- 出版日期: 2012-08-24
- 售價: $4,780
- 貴賓價: 9.5 折 $4,541
- 語言: 英文
- 頁數: 1104
- 裝訂: Hardcover
- ISBN: 0262018020
- ISBN-13: 9780262018029
-
相關分類:
Machine Learning
已過版
買這商品的人也買了...
-
深入淺出設計模式 (Head First Design Patterns)$880$695 -
Pattern Recognition and Machine Learning (Hardcover)$4,220$4,009 -
大話設計模式$620$490 -
Probabilistic Graphical Models: Principles and Techniques (Hardcover)$5,160$4,902 -
大話資料結構$590$466 -
深入淺出 Python (Head First Python)$780$616 -
Android 4.X 手機/平板電腦程式設計入門、應用到精通, 2/e (適用 Android 1.X~4.X)$520$411 -
JavaScript 大全, 6/e (JavaScript: The Definitive Guide: Activate Your Web Pages, 6/e)$1,200$948 -
Debug Hacks 除錯駭客 -- 極致除錯的技巧與工具$580$458 -
版本控制使用 Git, 2/e (Version Control with Git: Powerful tools and techniques for collaborative software development, 2/e)$580$458 -
ASP.NET MVC 4 網站開發美學$680$537 -
無瑕的程式碼-敏捷軟體開發技巧守則 (Clean Code: A Handbook of Agile Software Craftsmanship)$580$452 -
超圖解 Arduino 互動設計入門 (附 Arduino UNO R3 開發板)$1,130$961 -
Arduino UNO R3 開發板(副廠相容版)附傳輸線$400$380 -
易讀程式之美學-提升程式碼可讀性的簡單法則 (The Art of Readable Code)$480$379 -
無瑕的程式碼 番外篇-專業程式設計師的生存之道 (The Clean Coder: A Code of Conduct for Professional Programmers)
$360$281 -
無瑕的程式碼-敏捷軟體開發技巧守則 + 番外篇-專業程式設計師的生存之道 (雙書合購)$940$700 -
改變世界的九大演算法 : 讓今日電腦無所不能的最強概念 (Nine Algorithms That Changed the Future: The Ingenious Ideas That Drive Today’s Computers)$360$284 -
ASP.NET MVC 5 網站開發美學$780$616 -
Introduction to Machine Learning, 3/e (Hardcover)$1,390$1,362 -
精通 Python|運用簡單的套件進行現代運算 (Introducing Python: Modern Computing in Simple Packages)$780$616 -
完整學會 Git, GitHub, Git Server 的24堂課$360$284 -
$1,617Deep Learning (Hardcover) -
TensorFlow + Keras 深度學習人工智慧實務應用$590$460 -
Elements of Causal Inference: Foundations and Learning Algorithms (Hardcover)$1,840$1,748
相關主題
商品描述
Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach. The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package--PMTK (probabilistic modeling toolkit)--that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.
商品描述(中文翻譯)
今天網路上大量的電子數據需要自動化的數據分析方法。機器學習提供了這些方法,開發出能自動檢測數據模式並利用發現的模式來預測未來數據的技術。本教科書提供了一個全面且自成體系的機器學習領域介紹,基於統一的概率方法。內容涵蓋廣泛且深入,提供有關概率、優化和線性代數等主題的必要背景資料,並討論該領域的最新發展,包括條件隨機場(conditional random fields)、L1正則化和深度學習。這本書以非正式且易於理解的風格撰寫,並附有最重要算法的偽代碼。所有主題都用彩色圖片和來自生物學、文本處理、計算機視覺和機器人技術等應用領域的實例進行豐富的說明。這本書強調基於原則的模型方法,而不是提供不同啟發式方法的食譜,經常使用圖形模型的語言以簡潔且直觀的方式來指定模型。幾乎所有描述的模型都已在一個名為PMTK(概率建模工具包)的MATLAB軟體包中實現,該軟體包可在線免費獲得。本書適合具有入門級大學數學背景的高年級本科生和初學的研究生。
