Deep Learning (Hardcover)

Ian Goodfellow, Yoshua Bengio, Aaron Courville

  • 出版商: MIT
  • 出版日期: 2016-11-18
  • 售價: $1,650
  • 貴賓價: 9.8$1,617
  • 語言: 英文
  • 頁數: 775
  • 裝訂: Hardcover
  • ISBN: 0262035618
  • ISBN-13: 9780262035613
  • 相關分類: DeepLearning
  • 相關翻譯: 深度學習 (Deep Learning) (簡中版)
    深度學習 (Deep Learning)(繁體中文版) (繁中版)
  • 銷售排行: 👍 2022 年度 英文書 銷售排行 第 15 名
    🥉 2022/6 英文書 銷售排行 第 3 名
    👍 2020 年度 英文書 銷售排行 第 11 名
    🥈 2020/12 英文書 銷售排行 第 2 名
    🥈 2020/6 英文書 銷售排行 第 2 名
    👍 2019 年度 英文書 銷售排行 第 6 名

    無法訂購
    無現貨庫存(No stock available)

    前往其他有現貨版本↗️

買這商品的人也買了...

商品描述

"Written by three experts in the field, Deep Learning is the only comprehensive book on the subject." -- Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX

Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.

The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models.

Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

商品描述(中文翻譯)

「由三位領域專家撰寫,《深度學習》是唯一一本全面介紹該主題的書籍。」──埃隆·馬斯克(Elon Musk),OpenAI聯合主席,特斯拉和SpaceX的聯合創始人兼首席執行官。

深度學習是一種機器學習的形式,使計算機能夠從經驗中學習並以概念的層次結構理解世界。由於計算機從經驗中獲取知識,因此不需要人類計算機操作員正式指定計算機所需的所有知識。概念的層次結構使計算機能夠通過將較簡單的概念組合起來來學習複雜的概念;這些層次結構的圖表可能有多層深。本書介紹了深度學習的廣泛主題。

該書提供了數學和概念背景,涵蓋了線性代數、概率論和信息論、數值計算和機器學習中的相關概念。它描述了業界從業者使用的深度學習技術,包括深度前饋網絡、正則化、優化算法、卷積網絡、序列建模和實用方法;並且它調查了自然語言處理、語音識別、計算機視覺、在線推薦系統、生物信息學和視頻遊戲等應用。最後,該書提供了研究觀點,涵蓋了線性因子模型、自編碼器、表示學習、結構化概率模型、蒙特卡羅方法、分割函數、近似推理和深度生成模型等理論主題。

《深度學習》可供計劃在工業界或研究領域發展職業的本科生或研究生使用,以及希望在產品或平台中開始使用深度學習的軟件工程師使用。該書的網站提供了讀者和教師的補充資料。