Deep Learning (Hardcover)
暫譯: 深度學習 (精裝版)
Ian Goodfellow, Yoshua Bengio, Aaron Courville
- 出版商: MIT
- 出版日期: 2016-11-18
- 定價: $1,650
- 售價: 9.8 折 $1,617
- 語言: 英文
- 頁數: 775
- 裝訂: Hardcover
- ISBN: 0262035618
- ISBN-13: 9780262035613
-
相關分類:
DeepLearning
-
相關翻譯:
深度學習 (簡中版)
深度學習 (Deep Learning)(繁體中文版) (繁中版)
銷售排行:
🥈 2024/8 英文書 銷售排行 第 2 名
👍 2022 年度 英文書 銷售排行 第 15 名
🥉 2022/6 英文書 銷售排行 第 3 名
👍 2020 年度 英文書 銷售排行 第 11 名
🥈 2020/12 英文書 銷售排行 第 2 名
🥈 2020/6 英文書 銷售排行 第 2 名
立即出貨
買這商品的人也買了...
-
Pattern Recognition and Machine Learning (Hardcover)$4,210$4,000 -
Learning From Data (Hardcover)$1,200$1,176 -
無瑕的程式碼-敏捷軟體開發技巧守則 + 番外篇-專業程式設計師的生存之道 (雙書合購)$940$700 -
精通 Python|運用簡單的套件進行現代運算 (Introducing Python: Modern Computing in Simple Packages)$780$616 -
完整學會 Git, GitHub, Git Server 的24堂課$360$284 -
Python 機器學習 (Python Machine Learning)$580$452 -
網站擷取|使用 Python (Web Scraping with Python: Collecting Data from the Modern Web)$580$458 -
iOS 10 App 程式設計實力超進化實戰攻略 : 知名 iOS教學部落格 AppCoda 作家親授實作關鍵技巧讓你不NG$720$562 -
今天不學機器學習,明天就被機器取代:從 Python 入手+演算法$590$502 -
超圖解 Arduino 互動設計入門, 3/e$680$578 -
Python 自動化的樂趣|搞定重複瑣碎 & 單調無聊的工作 (中文版) (Automate the Boring Stuff with Python: Practical Programming for Total Beginners)$500$425 -
深度學習快速入門 — 使用 TensorFlow (Getting started with TensorFlow)
$360$281 -
演算法技術手冊, 2/e (Algorithms in a Nutshell: A Practical Guide, 2/e)$580$458 -
$474Tensorflow:實戰Google深度學習框架 -
$990Hands-On Machine Learning with Scikit-Learn and TensorFlow (Paperback) -
TensorFlow + Keras 深度學習人工智慧實務應用$590$460 -
寫程式前就該懂的演算法 ─ 資料分析與程式設計人員必學的邏輯思考術 (Grokking Algorithms: An illustrated guide for programmers and other curious people)$390$308 -
$857深度學習 -
Deep Learning|用 Python 進行深度學習的基礎理論實作$580$458 -
Clean Architecture: A Craftsman's Guide to Software Structure and Design (Paperback)$1,850$1,813 -
Deep Learning with Python (Paperback)$1,760$1,672 -
演算法圖鑑:26種演算法 + 7種資料結構,人工智慧、數據分析、邏輯思考的原理和應用 step by step 全圖解$450$356 -
MATLAB: A Practical Introduction to Programming and Problem Solving$2,300$2,185 -
Reinforcement Learning: An Introduction, 2/e (Hardcover)$1,750$1,715 -
深度學習 (Deep Learning)(繁體中文版)$1,200$1,020
相關主題
商品描述
"Written by three experts in the field, Deep Learning is the only comprehensive book on the subject." -- Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX
Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.
The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models.
Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.
商品描述(中文翻譯)
「由三位該領域的專家撰寫,深度學習 是該主題唯一的綜合性書籍。」 -- Elon Musk,OpenAI 聯合主席;Tesla 和 SpaceX 的共同創辦人及 CEO
深度學習是一種機器學習的形式,使計算機能夠從經驗中學習,並以概念的層次結構來理解世界。由於計算機從經驗中獲取知識,因此不需要人類計算機操作員正式指定計算機所需的所有知識。這種概念的層次結構使計算機能夠通過將複雜的概念建立在更簡單的概念之上來學習;這些層次的圖形將會有多層深。本書介紹了深度學習中的廣泛主題。
本書提供數學和概念背景,涵蓋線性代數、概率論和信息論、數值計算以及機器學習中的相關概念。它描述了業界從業者使用的深度學習技術,包括深度前饋網絡、正則化、優化算法、卷積網絡、序列建模和實用方法論;並調查了自然語言處理、語音識別、計算機視覺、在線推薦系統、生物信息學和視頻遊戲等應用。最後,本書提供研究視角,涵蓋線性因子模型、自編碼器、表示學習、結構化概率模型、蒙特卡羅方法、分區函數、近似推斷和深度生成模型等理論主題。
深度學習 可供計劃在業界或研究領域發展的本科生或研究生使用,也適合希望在其產品或平台中開始使用深度學習的軟體工程師。網站提供了供讀者和講師使用的補充材料。
