Common Sense, the Turing Test, and the Quest for Real AI (Hardcover)
暫譯: 常識、圖靈測試與真實人工智慧的探索 (精裝版)
Hector J. Levesque
- 出版商: MIT
- 出版日期: 2017-02-24
- 售價: $1,120
- 貴賓價: 9.5 折 $1,064
- 語言: 英文
- 頁數: 192
- 裝訂: Hardcover
- ISBN: 0262036045
- ISBN-13: 9780262036047
-
相關分類:
Machine Learning
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
時間序列分析$1,000$900 -
不再聽不懂!圖解網站建置與開發$450$356 -
Learning HTTP/2: A Practical Guide for Beginners (Paperback)$1,425$1,350 -
Deep Learning with Keras: Introduction to Deep Learning with Keras (Paperback)$920$874 -
資安風險評估指南 (Network Security Assessment, 3/e)$780$616 -
Data Science (Paperback)$760$722 -
CODE COMPLETE:軟體開發實務指南, 2/e (中文版) (Code Complete: A Practical Handbook of Software Construction, 2/e)$1,280$998 -
一書貫通 -- 從資料科學橫入人工智慧領域$650$553 -
數據分析的力量 Google、Uber 都在用的因果關係思考法$300$255 -
Computational Thinking (Paperback)$730$694 -
A-Life|使用 Python 實作人工生命模型$520$411 -
$301特徵工程入門與實踐 (Feature Engineering Made Easy) -
因果革命:人工智慧的大未來 (硬殼精裝)(The Book of Why: The New Science of Cause and Effect)$680$578 -
建立演進式系統架構|支援常態性的變更 (Building Evolutionary Architectures: Support Constant Change)$480$379 -
這就是服務設計!|服務設計工作者的實踐指南 (This Is Service Design Doing: Applying Service Design Thinking in the Real World)$880$695 -
失控的數據:數字管理的誤用與濫用,如何影響我們的生活與工作,甚至引發災難$380$342 -
深度學習|生命科學應用 (Deep Learning for the Life Sciences)$580$458 -
持續交付 2.0:實務導向的 DevOps$680$530 -
動手做深度強化學習 (Deep Reinforcement Learning Hands-On)$690$538 -
Mike Cohn 的使用者故事:敏捷軟體開發應用之道 (User Stories Applied : For Agile Software Development)$600$468 -
設計重構:25個管理技術債的技巧消除軟體設計臭味 (Refactoring for Software Design Smells: Managing Technical Debt)$520$406 -
強健的 Python|撰寫潔淨且可維護的程式碼 (Robust Python: Write Clean and Maintainable Code)$680$537 -
精通無瑕程式碼:工程師也能斷捨離!消除複雜度、提升效率的 17個關鍵技法 (The Art of Clean Code: Best Practices to Eliminate Complexity and Simplify Your Life)$600$468 -
Node.js 量化投資全攻略:從資料收集到自動化交易系統建構實戰(iThome鐵人賽系列書)【軟精裝】$760$593 -
新世代關聯 -- 圖資料庫理論精解 + 開發實務$980$774
相關主題
商品描述
What can artificial intelligence teach us about the mind? If AI's underlying concept is that thinking is a computational process, then how can computation illuminate thinking? It's a timely question. AI is all the rage, and the buzziest AI buzz surrounds adaptive machine learning: computer systems that learn intelligent behavior from massive amounts of data. This is what powers a driverless car, for example. In this book, Hector Levesque shifts the conversation to "good old fashioned artificial intelligence," which is based not on heaps of data but on understanding commonsense intelligence. This kind of artificial intelligence is equipped to handle situations that depart from previous patterns -- as we do in real life, when, for example, we encounter a washed-out bridge or when the barista informs us there's no more soy milk.
Levesque considers the role of language in learning. He argues that a computer program that passes the famous Turing Test could be a mindless zombie, and he proposes another way to test for intelligence -- the Winograd Schema Test, developed by Levesque and his colleagues. "If our goal is to understand intelligent behavior, we had better understand the difference between making it and faking it," he observes. He identifies a possible mechanism behind common sense and the capacity to call on background knowledge: the ability to represent objects of thought symbolically. As AI migrates more and more into everyday life, we should worry if systems without common sense are making decisions where common sense is needed.
商品描述(中文翻譯)
人工智慧能教我們什麼關於心智的知識?如果人工智慧的基本概念是思考是一種計算過程,那麼計算如何能夠照亮思考?這是一個及時的問題。人工智慧正如火如荼,而最受關注的人工智慧話題圍繞著自適應機器學習:從大量數據中學習智能行為的計算機系統。這就是無人駕駛汽車的運作原理。例如,在這本書中,Hector Levesque 將討論重心轉向「傳統的人工智慧」,這種人工智慧並不是基於大量數據,而是基於對常識智能的理解。這種人工智慧能夠處理與以往模式不同的情況——就像我們在現實生活中一樣,當我們遇到一座被沖毀的橋或當咖啡師告訴我們沒有豆漿時。
Levesque 考慮了語言在學習中的角色。他主張,一個通過著名的圖靈測試的計算機程序可能是一個無意識的僵屍,他提出了另一種測試智能的方法——Winograd Schema Test,這是由 Levesque 和他的同事們開發的。「如果我們的目標是理解智能行為,我們最好理解製造與偽造之間的區別,」他觀察到。他確定了常識背後的一個可能機制,以及調用背景知識的能力:以符號方式表達思考對象的能力。隨著人工智慧越來越多地融入日常生活,我們應該擔心那些缺乏常識的系統在需要常識的情況下做出決策。
