Fundamentals of Active Inference: Principles, Algorithms, and Applications of the Free Energy Principle for Engineers
暫譯: 主動推斷的基本原則:工程師的自由能原則、演算法與應用

Namjoshi, Sanjeev V.

  • 出版商: Summit Valley Press
  • 出版日期: 2026-03-17
  • 售價: $6,920
  • 貴賓價: 9.5$6,574
  • 語言: 英文
  • 頁數: 584
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 0262050951
  • ISBN-13: 9780262050951
  • 相關分類: Machine Learning
  • 尚未上市,無法訂購

商品描述

A comprehensive, up-to-date introduction to active inference and the free energy principle for an engineering-focused audience.

Active inference, which uses machine learning to model brain function and behavior, emerged from decades of cross-disciplinary research in computational neuroscience, resulting in a vast literature but no unifying treatment. Filling this gap, Sanjeev Namjoshi provides comprehensive coverage of the foundational material needed to understand and navigate this fast-moving field from first principles. Using a simple, conversational style free of proofs, lemmas, and theorems, Namjoshi brings together theory and technical material in one self-contained text. The book begins with an explanation of the general statistical framework used in active inference models that describes the relationship between artificial agents and their environments. It then introduces fundamental concepts in machine learning and statistics and connects them to the active inference perspective. Featuring worked examples, simulations, and detailed walkthroughs of concepts, this user-friendly text aims to expand the readership of active inference to an engineering-focused audience.

  • Provides a one-stop-shop for understanding the foundations and applications of active inference and the free energy principle
  • Makes a complex, interdisciplinary subject accessible to students and professionals beyond the neurosciences
  • Covers discrete and continuous state-space formulations of active inference as well as state-of-the-art extensions to base active inference methods
  • Features extensive appendices and supplemental resources

商品描述(中文翻譯)

針對工程導向讀者的全面且最新的主動推斷與自由能原則介紹。

主動推斷利用機器學習來建模大腦功能和行為,源於數十年的跨學科計算神經科學研究,產生了大量文獻,但缺乏統一的處理方式。為了填補這一空白,Sanjeev Namjoshi 提供了全面的基礎材料,幫助讀者從基本原則理解並導航這個快速發展的領域。Namjoshi 使用簡單、對話式的風格,避免使用證明、引理和定理,將理論和技術材料整合在一本自成一體的文本中。書中首先解釋了主動推斷模型中使用的一般統計框架,描述了人工代理與其環境之間的關係。接著介紹了機器學習和統計學的基本概念,並將其與主動推斷的視角相連接。這本用戶友好的文本包含了實例、模擬和概念的詳細步驟,旨在擴大主動推斷的讀者群,吸引工程導向的讀者。


  • 提供理解主動推斷和自由能原則的基礎和應用的一站式資源

  • 使這一複雜的跨學科主題對神經科學以外的學生和專業人士變得可接觸

  • 涵蓋主動推斷的離散和連續狀態空間公式,以及對基本主動推斷方法的最新擴展

  • 包含廣泛的附錄和補充資源

作者簡介

Sanjeev V. Namjoshi is a machine learning engineer at VERSES.AI. Over more than a decade in academia and industry, he performed research in bioinformatics and computational neuroscience as well as lead teams to build machine learning-based software.

作者簡介(中文翻譯)

Sanjeev V. Namjoshi 是 VERSES.AI 的機器學習工程師。在學術界和產業界超過十年的經驗中,他在生物資訊學和計算神經科學方面進行研究,並領導團隊開發基於機器學習的軟體。