Brain Computation as Hierarchical Abstraction (Computational Neuroscience Series)
暫譯: 大腦計算作為階層抽象(計算神經科學系列)
Dana H. Ballard
- 出版商: MIT
- 出版日期: 2015-02-20
- 售價: $1,750
- 貴賓價: 9.5 折 $1,663
- 語言: 英文
- 頁數: 456
- 裝訂: Paperback
- ISBN: 0262534126
- ISBN-13: 9780262534123
-
相關分類:
Machine Learning
立即出貨 (庫存=1)
買這商品的人也買了...
-
深入淺出設計模式 (Head First Design Patterns)$880$695 -
深入淺出 C (Head First C)$880$695 -
無瑕的程式碼-敏捷軟體開發技巧守則 (Clean Code: A Handbook of Agile Software Craftsmanship)$580$452 -
無瑕的程式碼 番外篇-專業程式設計師的生存之道 (The Clean Coder: A Code of Conduct for Professional Programmers)
$360$281 -
精通 Python|運用簡單的套件進行現代運算 (Introducing Python: Modern Computing in Simple Packages)$780$616 -
忍者:JavaScript 開發技巧探秘 (Secrets of the JavaScript Ninja)$590$460 -
$294鳳凰計畫:一個 IT計畫的傳奇故事 (The Phoenix Project : A Novel about IT, DevOps, and Helping your business win)(沙盤特別版) -
3D遊戲設計全攻略:遊戲機制×關卡設計×鏡頭訣竅
$890$694 -
Python 自動化的樂趣|搞定重複瑣碎 & 單調無聊的工作 (中文版) (Automate the Boring Stuff with Python: Practical Programming for Total Beginners)$500$425 -
從人到人工智慧,破解 AI 革命的 68個核心概念:實戰專家全圖解 × 人腦不被電腦淘汰的關鍵思考$360$284 -
TensorFlow + Keras 深度學習人工智慧實務應用$590$460 -
VMware vSphere 6 企業級專家手冊 (下) (Mastering VMware vSphere 6)$620$484 -
VMware vSphere 6 企業級專家手冊 (上) (Mastering VMware vSphere 6)$620$484 -
Deep Learning|用 Python 進行深度學習的基礎理論實作$580$458 -
初探機器學習|使用 Python (Thoughtful Machine Learning with Python)$480$379 -
鳳凰專案|看 IT部門如何讓公司從谷底翻身的傳奇故事$480$379 -
大數據時代必學的超吸睛視覺化工具與技術:Excel + Tableau 成功晉升資料分析師$520$406 -
Soft Skills 軟實力|軟體開發人員的生存手冊 (Soft Skills: The software developer's life manual)$520$411 -
演算法圖鑑:26種演算法 + 7種資料結構,人工智慧、數據分析、邏輯思考的原理和應用 step by step 全圖解$450$356 -
The Hacker Playbook 2 中文版:滲透測試實戰 (The Hacker Playbook 2: Practical Guide to Penetration Testing)$560$437 -
為你自己學 Git$500$425 -
灰帽 C# | 建立自動化安全工具的駭客手冊 (Gray Hat C#: A Hacker's Guide to Creating and Automating Security Tools)$450$383 -
初探機器學習演算法$480$379 -
Python 入門邁向高手之路王者歸來$699$594 -
圖解區塊鏈$380$300
相關主題
商品描述
The vast differences between the brain's neural circuitry and a computer's silicon circuitry might suggest that they have nothing in common. In fact, as Dana Ballard argues in this book, computational tools are essential for understanding brain function. Ballard shows that the hierarchical organization of the brain has many parallels with the hierarchical organization of computing; as in silicon computing, the complexities of brain computation can be dramatically simplified when its computation is factored into different levels of abstraction.
Drawing on several decades of progress in computational neuroscience, together with recent results in Bayesian and reinforcement learning methodologies, Ballard factors the brain's principal computational issues in terms of their natural place in an overall hierarchy. Each of these factors leads to a fresh perspective. A neural level focuses on the basic forebrain functions and shows how processing demands dictate the extensive use of timing-based circuitry and an overall organization of tabular memories. An embodiment level organization works in reverse, making extensive use of multiplexing and on-demand processing to achieve fast parallel computation. An awareness level focuses on the brain's representations of emotion, attention and consciousness, showing that they can operate with great economy in the context of the neural and embodiment substrates.
商品描述(中文翻譯)
大腦的神經電路與計算機的矽電路之間的巨大差異可能會讓人認為它們毫無共同之處。事實上,正如Dana Ballard在本書中所主張的,計算工具對於理解大腦功能至關重要。Ballard顯示,大腦的層級組織與計算的層級組織有許多相似之處;就像在矽計算中,當將大腦計算的複雜性分解為不同的抽象層次時,可以顯著簡化其計算。
基於幾十年來在計算神經科學方面的進展,以及最近在貝葉斯和強化學習方法論中的成果,Ballard將大腦的主要計算問題根據其在整體層級中的自然位置進行分解。這些因素中的每一個都提供了一種全新的視角。神經層級專注於基本的前腦功能,顯示處理需求如何決定廣泛使用基於時間的電路和整體的表格記憶組織。具體化層級的組織則反向運作,廣泛利用多工處理和按需計算來實現快速的並行計算。意識層級專注於大腦對情感、注意力和意識的表徵,顯示它們在神經和具體化基礎的背景下可以以極高的經濟性運作。
