Mathematical Modeling for Big Data Analytics
暫譯: 大數據分析的數學建模

El-Kafrawy, Passent, El-Amin, Mohamed F.

  • 出版商: Morgan Kaufmann
  • 出版日期: 2025-11-27
  • 售價: $6,150
  • 貴賓價: 9.5$5,843
  • 語言: 英文
  • 頁數: 302
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 0443267359
  • ISBN-13: 9780443267352
  • 相關分類: Data-miningMachine Learning
  • 海外代購書籍(需單獨結帳)

商品描述

Mathematical Modelling for Big Data Analytics is a comprehensive guidebook that explores the use of mathematical models and algorithms for analyzing large and complex datasets. The book covers a range of topics, including statistical modeling, machine learning, optimization techniques, and data visualization, and provides practical examples and case studies to demonstrate their applications in real-world scenarios. Users will find a clear and accessible resource to enhance their skills in mathematical modeling and data analysis for big data analytics. Real-world examples and case studies demonstrate how to approach and solve complex data analysis problems using mathematical modeling techniques.

This book will help readers understand how to translate mathematical models and algorithms into practical solutions for real-world problems. Coverage of the theoretical foundations of big data analytics, including qualitative and quantitative analytics techniques, digital twins, machine learning, deep learning, optimization, and visualization techniques make this a must have resource.

商品描述(中文翻譯)

《大數據分析的數學建模》是一本全面的指南,探討了數學模型和算法在分析大型和複雜數據集中的應用。這本書涵蓋了一系列主題,包括統計建模、機器學習、優化技術和數據可視化,並提供實際範例和案例研究,以展示它們在現實場景中的應用。讀者將發現這是一個清晰且易於理解的資源,能夠提升他們在大數據分析中的數學建模和數據分析技能。現實世界的範例和案例研究展示了如何使用數學建模技術來處理和解決複雜的數據分析問題。

這本書將幫助讀者理解如何將數學模型和算法轉化為解決現實問題的實用方案。涵蓋大數據分析的理論基礎,包括定性和定量分析技術、數位雙胞胎、機器學習、深度學習、優化和可視化技術,使這本書成為必備資源。