Pharmaceutical Data Mining: Approaches and Applications for Drug Discovery (Hardcover)
暫譯: 藥物數據挖掘:藥物發現的方法與應用(精裝版)
Konstantin V. Balakin
- 出版商: Wiley
- 出版日期: 2009-12-01
- 定價: $3,980
- 售價: 9.5 折 $3,781
- 語言: 英文
- 頁數: 584
- 裝訂: Hardcover
- ISBN: 0470196084
- ISBN-13: 9780470196083
-
相關分類:
Data-mining
立即出貨 (庫存 < 3)
買這商品的人也買了...
-
$1,274Computer Architecture: A Quantitative Approach, 4/e (Paperback)
-
$720$612 -
$380$300 -
$380$323 -
$780$616 -
$780$663 -
$520$442 -
$520$442 -
$380$300 -
$680$537 -
$650$507 -
$750$593 -
$580$458 -
$580$458 -
$500$395 -
$480$374 -
$970$922 -
$399Mastering Microsoft Windows 7 Administration (Paperback)
-
$1,290$1,226 -
$1,995The Next Wave of Technologies: Opportunities in Chaos (Hardcover)
-
$199Windows 7 Tweaks: A Comprehensive Guide on Customizing, Increasing Performance, and Securing Microsoft Windows 7 (Paperback)
-
$890$703 -
$480$379 -
$590$466 -
$490$387
相關主題
商品描述
In the era of post-genomic drug development, extracting and applying knowledge from chemical, biological, and clinical data is one of the greatest challenges facing the pharmaceutical industry. Pharmaceutical Data Mining brings together contributions from leading academic and industrial scientists, who address both the implementation of new data mining technologies and application issues in the industry. This accessible, comprehensive collection discusses important theoretical and practical aspects of pharmaceutical data mining, focusing on diverse approaches for drug discovery—including chemogenomics, toxicogenomics, and individual drug response prediction. The five main sections of this volume cover:
- A general overview of the discipline, from its foundations to contemporary industrial applications
- Chemoinformatics-based applications
- Bioinformatics-based applications
- Data mining methods in clinical development
- Data mining algorithms, technologies, and software tools, with emphasis on advanced algorithms and software that are currently used in the industry or represent promising approaches
In one concentrated reference, Pharmaceutical Data Mining reveals the role and possibilities of these sophisticated techniques in contemporary drug discovery and development. It is ideal for graduate-level courses covering pharmaceutical science, computational chemistry, and bioinformatics. In addition, it provides insight to pharmaceutical scientists, principal investigators, principal scientists, research directors, and all scientists working in the field of drug discovery and development and associated industries.
商品描述(中文翻譯)
領先的專家闡述了複雜的計算數據挖掘技術如何影響當代藥物發現與開發
在後基因組藥物開發的時代,從化學、生物和臨床數據中提取和應用知識是製藥行業面臨的最大挑戰之一。《製藥數據挖掘》匯集了來自領先學術界和工業界科學家的貢獻,這些專家探討了新數據挖掘技術的實施及其在行業中的應用問題。這本易於理解且全面的合集討論了製藥數據挖掘的重要理論和實踐方面,重點介紹了多種藥物發現的方法,包括化學基因組學(chemogenomics)、毒理基因組學(toxicogenomics)和個別藥物反應預測。該卷的五個主要部分涵蓋:
- 該學科的一般概述,從其基礎到當代工業應用
- 基於化學信息學的應用
- 基於生物信息學的應用
- 臨床開發中的數據挖掘方法
- 數據挖掘算法、技術和軟體工具,重點介紹目前在行業中使用的先進算法和軟體,或代表有前景的方法
在這本集中參考書中,《製藥數據挖掘》揭示了這些複雜技術在當代藥物發現與開發中的角色和可能性。它非常適合涵蓋製藥科學、計算化學和生物信息學的研究生課程。此外,它還為製藥科學家、首席研究員、首席科學家、研究主任以及所有在藥物發現與開發及相關行業工作的科學家提供了見解。