System Theory And Practical Applications Of Biomedical Signals
暫譯: 生物醫學信號的系統理論與實務應用
Gail Baura
- 出版商: Wiley
- 出版日期: 2002-08-26
- 售價: $6,820
- 貴賓價: 9.5 折 $6,479
- 語言: 英文
- 頁數: 472
- 裝訂: Hardcover
- ISBN: 0471236535
- ISBN-13: 9780471236535
-
相關分類:
數位訊號處理 Dsp
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
精通 COM+ 程式設計 (Understanding & Programming COM+)$580$458 -
ASP.NET 實戰 For C#.NET$490$387 -
Linux C/C++ 使用 GTK 與 Qt$680$537 -
資料庫系統原理第三版 (Fundamentals of Database Systems, 3/e)$760$600 -
鳥哥的 Linux 私房菜─基礎學習篇增訂版$560$476 -
H.264 and MPEG-4 Video Compression: Video Coding for Next Generation Multimedia$1,600$1,568 -
Medical Image Analysis$4,610$4,380 -
CCNA 認證教戰手冊 Exam 640-801 (CCNA Cisco Certified Network Associate Study Guide, 4/e)$780$663 -
Code Complete: A Practical Handbook of Software Construction, 2/e (Paperback)$2,180$2,071 -
Internet TCP/IP 協定觀念與實作, 2/e$580$493 -
Multiprocessor Systems-on-Chips (Hardcover)$3,400$3,230 -
Wireless Sensor Networks: An Information Processing Approach (IE-Paperback)$1,340$1,313 -
多媒體視訊程式設計─使用 Delphi$680$578 -
Fedora Core 3 Linux 實務應用 DVD版$650$553 -
ARM Linux 嵌入式系統發展技術$300$270 -
軟體測試理論與實作$520$406 -
資料結構--使用 C++$480$379 -
Struts 333個應用範例技巧大全集$590$460 -
XOOPS2 網站架設與管理 2005$590$502 -
Sniffer Pro 網路最佳化與故障排除手冊$580$452 -
Linux iptables 技術實務─防火牆、頻寬管理、連線管制$620$527 -
C 程式設計 500 個應用範例技巧大全集$590$460 -
Windows XP SP2 登錄檔嚴選密技$380$323 -
PHP for Flash 動態網站開發手札$620$527 -
Linux 伺服器進階管理實務$400$316
相關主題
商品描述
Description:
A volume in the IEEE Press Series in Biomedical Engineering
Metkin Akay, Series Editor
Endorsed by the IEEE Engineering in Medicine and Biology SocietyA valuable synthesis of system theory and real-world applications for biomedical instrumentation
System theory is becoming increasingly important to medical applications. Yet, biomedical and digital signal processing researchers rarely have expertise in practical medical applications, and medical instrumentation designers usually are unfamiliar with system theory. System Theory and Practical Applications for Biomedical Signals bridges those gaps in a practical manner, showing how various aspects of system theory are put into practice by industry.
Written from the perspective of an industry insider who actually made useful products based on the theory, this pragmatic guide combines traditional DSP and compartmental modeling, as well as pairing in-depth discussions of practical medical instrumentation applications and system theory.
Biomedical and DSP academic researchers pursuing grants and industry funding will find its real-world approach extremely valuable. Its in-depth discussion of the theoretical issues will clarify for medical instrumentation managers how system theory can compensate for less-than-ideal sensors. With application MATLAB exercises and suggestions for system theory course work included, the text also fills the need for detailed information for students or practicing engineers interested in instrument design.
Table of Contents:
Preface.
Nomenclature.
I FILTERS.
1 System Theory and Frequency-Selective Filters.
1.1 Input-Output Description.
1.2 Linear Constant Coefficient Difference Equations.
1.3 Basic Frequency-Selective Filter Concepts.
1.4 Design of IIR Digital Filters from Analog Filters.
1.5 Design of FIR Filters by Windowing.
1.6 Pseudorandom Binary Sequence Filter.
1.7 Summary.
1.8 References.
1.9 Recommended Exercises.
2 Low Flow Rate Occlusion Detection Using Resistance Monitoring.
2.1 Physiology of Intravenous Drug Administration.
2.2 Intravenous Infusion Devices.
2.3 Problem Significance.
2.4 Resistance Monitoring in the IVAC Signature Edition Pump.
2.5 Summary.
2.6 References.
2.7 Matlab Exercises.
2.8 Intraarterial Blood Pressure Exercises.
3 Adaptive Filters.
3.1 Adaptive Noise Cancellation Proof.
3.2 Optimization Concepts.
3.3 Least Mean Squares Algorithm for Finite Impulse Response Filters.
3.4 Infinite Impulse Response Filters.
3.5 Adaptive Noise Cancellation.
3.6 Summary.
3.7 References.
3.8 Recommended Exercises.
4 Improved Pulse Oximetry.
4.1 Physiology of Oxygen Transport.
4.2 In Vitro Oxygen Measurements.
4.3 Problem Significance.
4.4 Adaptive Noise Cancellation in Masimo Software.
4.5 Summary.
4.6 References.
4.7 Noninvasive Blood Pressure Exercises.
5 Time-Frequency and Time-Scale Analysis.
5.1 Time-Frequency Representations.
5.2 Spectrogram.
5.3 Wigner Distribution.
5.4 Kernel Method.
5.5 Time-Scale Representations.
5.6 Scalograms.
5.7 Summary.
5.8 References.
5.9 Recommended Exercises.
6 Improved Impedance Cardiography.
6.1 Physiology of Cardiac Output.
6.2 In Vivo and In Vitro Cardiac Output Measurements.
6.3 Problem Significance.
6.4 Spectrogram Processing in Drexel Patents.
6.5 Wavelet Processing in CardioDynamics Software.
6.6 Summary.
6.7 References.
6.8 Electrocardiogram QRS Detection Exercises.
II MODELS FOR REAL TIME PROCESSING.
7 Linear System Identification.
7.1 The ARMAX Model and Variations.
7.2 Uniqueness Properties.
7.3 Model Identifiability.
7.4 Prediction Error Methods.
7.5 Instrumental Variable Methods.
7.6 Recursive Least Squares Algorithm.
7.7 Model Validation.
7.8 Summary.
7.9 References.
7.10 Recommended Exercises.
8 External Defibrillation Waveform Optimization.
8.1 Physiology.
8.2 External Defibrillation Waveforms.
8.3 Problem Significance.
8.4 Previous Studies.
8.5 Application of the ARX Model to Prediction of Transthoracic Impedance.
8.6 Transthoracic Impedance as the Basis of External Defibrillation Waveform Optimization.
8.7 Summary.
8.8 References.
8.9 Digital Thermometry Exercises.
9 Nonlinear System Identification.
9.1 Historical Review.
9.2 Supervised Multilayer Networks.
9.3 Unsupervised Neural Networks: Kohonen Network.
9.4 Unsupervised Networks: Adaptive Resonance Theory Network.
9.5 Model Validation.
9.6 Summary.
9.7 References.
9.8 Recommended Exercises.
10 Improved Screening for Cervical Cancer.
10.1 Physiology.
10.2 Pap Smear.
10.3 Problem Significance.
10.4 Semiautomation of Cervical Cancer Screening.
10.5 Cervical Cancer Screening Using Neural Networks.
10.6 Summary.
10.7 References.
10.8 Cardiac Output Exercises.
11 Fuzzy Models.
11.1 Historical Review.
11.2 Fuzzification.
11.3 Rule Base Inference.
11.4 Defuzzification.
11.5 Knowledge Base.
11.6 Model Validation.
11.7 Fuzzy Control.
11.8 Fuzzy Pattern Recognition.
11.9 Summary.
11.10 References.
11.11 Recommended Exercises.
12 Continuous Noninvasive Blood Pressure Monitoring: Proof of Concept.
12.1 Physiology.
12.2 In Vivo and In Vitro Blood Pressure Measurements.
12.3 Problem Significance.
12.4 Previous Studies.
12.5 Work Based on Digital Signal Processing.
12.6 Continuous Blood Pressure Measurement.
12.7 Summary.
12.8 References.
12.9 Infusion Pump Occlusion Alarm Exercises.
III COMPARTMENTAL MODELS.
13 The Linear Compartmental Model.
13.1 Protein Structure.
13.2 Experimental Design.
13.3 Kinetic Models.
13.4 Model Identifiability.
13.5 Nonlinear Least Squares Estimation.
13.6 Sampling Schedules.
13.7 Model Validation.
13.8 Summary.
13.9 References.
13.10 Recommended Exercises.
14 Pharmacologic Stress Testing Using Closed-Loop Drug Delivery.
14.1 Pharmacokinetics and Pharmacodynamics.
14.2 Control Theory.
14.3 Problem Significance.
14.4 Closed-Loop Drug Infusion in Pharmacological Stress Tests.
14.5 Summary.
14.6 References.
14.7 Peripheral Insulin Kinetics Exercises.
15 The Nonlinear Compartmental Model.
15.1 Michaelis-Menten Dynamics.
15.2 Bilinear Relation.
15.3 Summary.
15.4 Recommended References.
15.5 Recommended Exercises.
16 The Role of Nonlinear Compartmental Models in Development of Antiobesity Drugs.
16.1 Body Weight Regulation.
16.2 Receptor-Mediated Transport Across The Blood-Brain Barrier.
16.3 Problem Significance.
16.4 Previous Blood-Brain Barrier Insulin Studies.
16.5 Saturable Transport of Insulin from Plasma into the CNS.
16.6 Summary.
16.7 References.
16.8 Central Insulin Kinetics Exercises.
IV SYSTEM THEORY IMPLEMENTATION.
17 Algorithm Implementation.
17.1 Data Types.
17.2 Digital Signal Processors.
17.3 Embedded Systems.
17.4 FDA Review of Medical Device Software.
17.5 Summary.
17.6 References.
18 The Need for More System Theory in Low-Cost Medical Applications.
18.1 Future Employment for Biomedical Engineering Graduate Students.
18.2 The Loss of Innovation in the Medical Device Industry.
18.3 Low-Cost Medical Monitoring and System Theory.
18.4 Addressing the Need for Innovation in a Cost-Conscious Environment.
18.5 References.
Glossary.
Index.
商品描述(中文翻譯)
**描述:**
IEEE Press生物醫學工程系列中的一卷
Metkin Akay,系列編輯
獲得IEEE醫學與生物工程學會的支持
這本書是系統理論與生物醫學儀器實際應用的寶貴綜合體。
系統理論在醫療應用中變得越來越重要。然而,生物醫學和數位信號處理研究人員通常缺乏實際醫療應用的專業知識,而醫療儀器設計師通常對系統理論不熟悉。《生物醫學信號的系統理論與實際應用》以實用的方式彌補了這些差距,展示了行業如何將系統理論的各個方面付諸實踐。
本書從一位實際基於理論製作有用產品的行業內部人士的角度撰寫,這本務實的指南結合了傳統的數位信號處理(DSP)和分區建模,並深入討論實際醫療儀器應用和系統理論。
追求補助金和行業資金的生物醫學和DSP學術研究人員將會發現其現實世界的方法極具價值。對理論問題的深入討論將幫助醫療儀器經理了解系統理論如何彌補不理想的傳感器。書中還包括MATLAB應用練習和系統理論課程作業建議,滿足對儀器設計感興趣的學生或在職工程師對詳細資訊的需求。
**目錄:**
前言
術語
I 濾波器
1 系統理論與頻率選擇性濾波器
1.1 輸入-輸出描述
1.2 線性常數係數差分方程
1.3 基本頻率選擇性濾波器概念
1.4 從類比濾波器設計IIR數位濾波器
1.5 通過窗函數設計FIR濾波器
1.6 偽隨機二進位序列濾波器
1.7 總結
1.8 參考文獻
1.9 推薦練習
2 使用電阻監測的低流量閉塞檢測
2.1 靜脈藥物給藉的生理學
2.2 靜脈輸液裝置
2.3 問題的重要性
2.4 IVAC簽名版泵中的電阻監測
2.5 總結
2.6 參考文獻
2.7 MATLAB練習
2.8 動脈內血壓練習
3 自適應濾波器
3.1 自適應噪聲消除證明
3.2 優化概念
3.3 有限脈衝響應濾波器的最小均方算法
3.4 無限脈衝響應濾波器
3.5 自適應噪聲消除
3.6 總結
3.7 參考文獻
3.8 推薦練習
4 改進的脈搏血氧測量
4.1 氧氣運輸的生理學
4.2 體外氧氣測量
4.3 問題的重要性
4.4 Masimo軟體中的自適應噪聲消除
4.5 總結
4.6 參考文獻
4.7 非侵入性血壓練習
5 時頻與時間尺度分析
5.1 時頻表示
5.2 聲譜圖
5.3 Wigner分佈
5.4 核方法
5.5 時間尺度表示
5.6 標度圖
5.7 總結
5.8 參考文獻
5.9 推薦練習
6 改進的阻抗心電圖
6.1 心輸出量的生理學
6.2 體內與體外心輸出量測量
6.3 問題的重要性
6.4 Drexel專利中的聲譜圖處理
6.5 CardioDynamics軟體中的小波處理
6.6 總結
6.7 參考文獻
6.8 心電圖QRS檢測練習
II 實時處理的模型
7 線性系統識別
7.1 ARMAX模型及其變體
7.2 唯一性特性
7.3 模型可識別性
7.4 預測誤差方法
7.5 工具變數方法
7.6 遞歸最小二乘算法
7.7 模型驗證
7.8 總結
7.9 參考文獻
7.10 推薦練習
8 外部除顫波形優化
8.1 生理學
8.2 外部除顫波形
8.3 問題的重要性
8.4 先前研究
8.5 ARX模型在胸腔阻抗預測中的應用
8.6 胸腔阻抗作為外部除顫波形優化的基礎
8.7 總結
8.8 參考文獻
8.9 數位溫度計練習
9 非線性系統識別
9.1 歷史回顧
9.2 監督式多層網絡
9.3 非監督式神經網絡:Kohonen網絡
9.4 非監督式網絡:自適應共振理論網絡
9.5 模型驗證
9.6 總結
9.7 參考文獻
9.8 推薦練習
10 改進的子宮頸癌篩檢
10.1 生理學
10.2 巴氏塗片
10.3 問題的重要性
10.4 子宮頸癌篩檢的半自動化
10.5 使用神經網絡的子宮頸癌篩檢
10.6 總結
10.7 參考文獻
10.8 心輸出量練習
11 模糊模型
11.1 歷史回顧
11.2 模糊化
11.3 規則基礎推理
11.4 去模糊化
11.5 知識基礎
11.6 模型驗證
11.7 模糊控制
11.8 模糊模式識別
11.9 總結
11.10 參考文獻
11.11 推薦練習
12 持續非侵入性血壓監測:概念驗證
12.1 生理學
12.2 體內與體外血壓測量
12.3 問題的重要性
12.4 先前研究
12.5 基於數位信號處理的工作
12.6 持續血壓測量
12.7 總結
12.8 參考文獻
12.9 輸液泵閉塞警報練習
III 分區模型
13 線性分區模型
13.1 蛋白質結構
13.2 實驗設計
13.3 動力學模型
13.4 模型可識別性
13.5 非線性最小二乘估計
13.6 取樣計畫
13.7 模型驗證
13.8 總結
13.9 參考文獻
13.10 推薦練習
14 使用閉環藥物給藉的藥理學壓力測試
14.1 藥物動力學與藥效學
14.2 控制理論
14.3 問題的重要性
14.4 藥理學壓力測試中的閉環藥物輸注
14.5 總結
14.6 參考文獻
14.7 外周胰島素動力學練習
15 非線性分區模型
15.1 Michaelis-Menten動力學
15.2 雙線性關係
15.3 總結
15.4 推薦參考文獻
15.5 推薦練習
16 非線性分區模型在抗肥胖藥物開發中的角色
16.1 體重調節
16.2 藥物介導的血腦屏障運輸
16.3 問題的重要性
16.4 先前的血腦屏障胰島素研究
16.5 胰島素從血漿進入中樞神經系統的飽和運輸
16.6 總結
16.7 參考文獻
16.8 中樞胰島素動力學練習
IV 系統理論實施
17 算法實施
17.1 數據類型
17.2 數位信號處理器
17.3 嵌入式系統
17.4 FDA對醫療設備軟體的審查
17.5 總結
17.6 參考文獻
18 低成本醫療應用中對系統理論的需求
18.1 生物醫學工程研究生的未來就業
18.2 醫療設備行業創新損失
18.3 低成本醫療監測與系統理論
18.4 在成本意識環境中解決創新需求
18.5 參考文獻
術語表
索引
